
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

On Efficiency, Fairness and Security in AI Accelerator Resource Sharing: A
Survey

JIAHUA HUANG, South China University of Technology, China and Pengcheng Laboratory, China

WEIWEI LIN∗, South China University of Technology, China and Pengcheng Laboratory, China

WENTAI WU, Jinan University, China

YANG WANG, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China

HAOCHENG ZHONG, South China University of Technology, China

XINHUA WANG, South China University of Technology, China

KEQIN LI, State University of New York, USA

The effective and efficient utilization of AI accelerators represents a critical issue for the practitioners engaged in the field of deep
learning. Practical evidence from companies such as Alibaba, SenseTime, and Microsoft reveals that the utilization of production GPU
clusters in the industry is generally between 25% and 50%. This indicates a significant opportunity for improvement. To this end, AI
accelerator resource sharing has emerged as a promising approach to the performance optimization of multi-tenant clusters. This
survey covers this line of studies from 2016 to 2024, focusing primarily on system efficiency while also including discussion on fairness,
interference, and security in AI accelerator sharing. We revisit the fundamentals and key concepts, followed by a comprehensive
review of recent advances in the field. We find that over 70% of the studies focus on efficiency improvement. We also observe that
approximately half of the reviewed studies have made their source code publicly available, while fewer than one-third of the studies did
not utilize a physical machine for experimentation. Finally, based on the limitations of existing research, we outline several directions
for future research concerning the integration of sharing with large language models (LLMs), coordination between schedulers and
application-layer metrics, and collaboration among heterogeneous accelerators.

CCS Concepts: • General and reference→ Surveys and overviews; • Computing methodologies→Massively parallel algorithms;
• Computer systems organization→ Multicore architectures; • Security and privacy → Privacy protections.

Additional Key Words and Phrases: AI accelerators, Resource sharing, Artificial Intelligence, fairness, security

ACM Reference Format:
Jiahua Huang, Weiwei Lin, Wentai Wu, Yang Wang, Haocheng Zhong, Xinhua Wang, and Keqin Li. 2024. On Efficiency, Fairness and
Security in AI Accelerator Resource Sharing: A Survey. In Proceedings of Make sure to enter the correct conference title from your rights

confirmation emai (Conference acronym ’XX). ACM, New York, NY, USA, 35 pages. https://doi.org/XXXXXXX.XXXXXXX

∗Corresponding author

Authors’ Contact Information: Jiahua Huang, ftjiah.huang@mail.scut.edu.cn, South China University of Technology, Guangzhou, China and Pengcheng
Laboratory, Shenzhen, China; Weiwei Lin, linww@scut.edu.cn, South China University of Technology, Guangzhou, China and Pengcheng Laboratory,
Shenzhen, China; Wentai Wu, Jinan University, Guangzhou, China, wentaiwu@jnu.edu.cn; Yang Wang, yang.wang1@siat.ac.cn, Shenzhen Institute
of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Haocheng Zhong, cshczhong@mail.scut.edu.cn, South China University
of Technology, Guangzhou, China; Xinhua Wang, 18340826607@163.com, South China University of Technology, Guangzhou, China; Keqin Li, State
University of New York, New York, USA, lik@newpaltz.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/XXXXXXX.XXXXXXX


53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Huang et al.

1 INTRODUCTION

The rapid advancements in artificial intelligence (AI) and the growing complexity of deep learning models have led to
an unprecedented demand for high-performance computing resources. AI accelerators, including Graphics Processing
Units (GPUs) [41], Tensor Processing Units (TPUs) [52], and other custom AI chips, have emerged as critical components
in datacenters designed to handle the intensive computational requirements of deep learning workloads.

AI accelerators are specifically engineered to provide significant performance improvements for deep learning tasks
through massive parallelism and specialized hardware features. Despite their capabilities, managing and scheduling
resources within datacenters equipped with AI accelerators remains a significant challenge. As demonstrated by data
released by companies including Alibaba [115], SenseTime [42] and Microsoft [47], the utilization of production GPU
clusters is typically below 50%, which suggests that there is still considerable room for improvement. The heterogeneity
of these accelerators and the dynamic nature of deep learning workloads necessitate advanced resource management
strategies to optimize performance, cost, and resource utilization.

Currently, resource sharing in AI accelerator-based datacenters is a new area of interest. Techniques such as static
partitioning, dynamic resource allocation, virtualization, and multi-tenancy have been developed to address these
challenges. Static partitioning involves dividing resources into fixed segments for different tasks. Dynamic resource
allocation adjusts resources in real-time based on demand. Virtualization abstracts physical resources to create flexible
and isolated environments for multiple workloads, while multi-tenancy allows multiple users or applications to share
the same physical resources. Effective resource sharing strategies can significantly enhance the efficiency and flexibility
of AI accelerator utilization, ensuring that resources are dynamically allocated to match the computational demands of
deep learning applications. This not only maximizes resource utilization but also helps in maintaining quality of service
(QoS) and reducing operational costs.

This survey aims to provide a comprehensive review of state-of-the-art technologies for resource sharing in data-
centers equipped with AI accelerators. To the best of our knowledge, it is the first to specifically focus on accelerator
sharing technologies in both research and production environments for datacenters that handle multiple types of
workloads. Our main contributions are as follows:

• We provide an overview of recent works in the field, revisit the architectures of mainstream AI accelerators,
and summarize the key concepts and fundamentals for accelerator resource sharing.

• We navigate the readers through the latest studies in the field by the different aims of system optimization
including efficiency, fairness, interference, and security. This taxonomy reveals where the majority of interest is
and where more effort should be made.

• We analyze the limitations of existing technologies, explore emerging trends, and propose future research
directions to address the evolving needs of deep learning applications in AI-accelerated environments.

1.1 Overview of the Field

This survey covers the studies from 2016 to 2024 in relevance to accelerator sharing technology. We first present the
statistics from different aspects in Figure 1. Our first observation is that most of recent studies consider efficiency im-
provement as their primary objective, indicating that the main role of sharing technology is to enhance the performance
of AI accelerators. Therefore, our survey will concentrate on efficiency, categorizing different types of efficiency to
explore the distinctions between various optimization methods. We also find that a dominating percentage of research

Manuscript submitted to ACM



105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

On Efficiency, Fairness and Security in AI Accelerator Resource Sharing: A Survey 3

in the field is conducted on GPUs, while other types of AI accelerator only account for <15% combined. Most of the
studies experimented on real clusters and over 40% of the them have source code publicly available (Figure 1d).

(a) Key techniques employed (b) Objectives of optimization

(c) Types of accelerator (d) Source code availability (e) Setup of Experiment

Fig. 1. A statistic view of the studies surveyed in this paper.

1.2 Existing Surveys

We compare our work with related surveys to provide a better understanding of our contributions to the community.

• Many previous surveys limit their attention to GPU sharing [40, 53]. In contrast, our work encompasses GPUs,
TPUs, Neural Processing Units (NPUs), and other custom AI chips, and we survey sharing technologies across
several levels.

• Zhao et al. [141] surveyed commercial GPU architectures to support GPU multitasking. However, we include
both software and hardware sharing approaches.

• Yu et al. [130] summarized the challenges and optimization opportunities for multi-tenant DL inference on a
single GPU. But our survey consider both training and inference workloads.

• Liang et al. [66] surveyed GPU sharing technologies that apply various approaches and network bandwidth-
sharing technologies operating at different granularity levels. However, this survey do not cover as much
ground as our work does, as it primarily focuses on GPUs and largely overlook other accelerators such as NPUs.

• There are surveys of GPU workload scheduling at the datacenter level [79, 128], whilst our primary focus is
accelerator sharing at the node or device level.

The comparison of all related surveys is shown in Table 1. This survey focuses on recent advancements of sharing
technologies in AI accelerators, with a particular emphasis on the optimization of resources and key performance

Manuscript submitted to ACM



157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Huang et al.

Table 1. A Comparison of Related Surveys

Survey Year Including NPU or TPU Including Training and Inference Workloads Focus on Card-level Sharing Comparison of Effects

[40] 2017 ✓

[53] 2018 ✓

[79] 2020 ✓ ✓

[141] 2021 ✓

[130] 2022 ✓

[128] 2024 ✓ ✓

[66] 2024 ✓

ours - ✓ ✓ ✓ ✓

indicators such as efficiency, fairness, interference, and security. Furthermore, we identify current trends, elucidate
technological constraints, and propose avenues for future research in the domain of deep learning in AI-accelerated
environments.

Fig. 2. Structure of this Article

Manuscript submitted to ACM



209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

On Efficiency, Fairness and Security in AI Accelerator Resource Sharing: A Survey 5

1.3 Article Organization

The structure of this article is organized as follows: Section 2 introduces the architecture of AI accelerators, performance
measures of AI workloads and key concepts of sharing technology. The main body of this article is presented in Figure
2. Section 3 discusses various works that optimize the efficiency of the accelerators, which are categorized by training,
inference, and mixed workloads. Section 4 examines research focused on fairness, interference and security for AI
accelerators. Section 5 highlights existing challenges, in addition to those addressed in the aforementioned sections.
Section 6 concludes this survey article.

2 BACKGROUND

As depicted in Figure 2, this section lays the ground for understanding AI accelerator sharing by focusing on three critical
aspects. It begins with a detailed comparison of mainstream AI accelerators—GPUs, TPUs, NPUs, and edge-specific
accelerators—highlighting their architectures and capabilities. Next, it defines key performance metrics relevant to
AI workloads, such as throughput, latency, and utilization, providing a foundation for evaluating resource efficiency.
Finally, it introduces essential concepts and principles of accelerator sharing, supported by clear visualizations of sharing
mechanisms and resource allocation strategies, setting the stage for a deeper exploration of optimization approaches in
subsequent sections.

2.1 Brief View of AI Accelerators

This section establishes the foundational knowledge required to understand AI accelerators and their significance in
modern computing. It introduces the key concepts related to AI accelerator technologies, Table 2 provides a comparative
analysis of mainstream accelerators, complementing the discussion in this section.

Table 2. Comparison of Mainstream Accelerators

Dimension GPU TPU NPU Edge-Specific
Accelerators

Ecosystem Ma-
turity

Mature CUDA
ecosystem, large
community

TensorFlow-focused
ecosystem

Growing ecosystem,
limited tool support

Vendor-specific,
fragmented

Framework
Compatibility

PyTorch, TensorFlow,
JAX

TensorFlow, Limited
JAX

Limited
PyTorch/TensorFlow

Vendor-specific only

Precision Sup-
port

FP32, FP16, INT8, FP8 BF16, INT8 FP16, INT8, INT4 Primarily INT8, INT4

Memory Archi-
tecture

HBM3, 4.8TB/s HBM2, 1200GB/s HBM2e, 392GB/s Limited on-chip
memory

Key Metrics
(Performance)

500-4000 TOPS/s(H200),
350-700W

275-420 TOPS/s (v4),
175-250W

512 TOPS/s(910B),
160-400W

200 TOPS/s(Intel Agilex
9), 10-120W

BF16: Brain Floating Point, 16-bit format optimized for deep learning

2.1.1 Graphics Processing Unit. GPUs, initially designed for rendering graphics, are now widely used for deep learning
and other general-purpose computing tasks. They feature a large number of parallel processing units, making them

Manuscript submitted to ACM



261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Huang et al.

well-suited for large-scale matrix operations and supporting various machine learning frameworks and algorithms.
Notable products include NVIDIA’s A100, V100, and Tesla series, as well as AMD’s Radeon Instinct series.

(a) GPU Architecture

(b) TPU Architecture [52] (c) NPU Architecture [124]

Fig. 3. Architecture of part AI accelerators

As show in Figure 3a, the structure of a modern GPU features multiple Graphics Processing Clusters (GPCs), each
containing several Streaming Multiprocessors (SMs). The SMs are responsible for executing parallel computational
tasks. Each SM has its own ALUs and L1 cache, enabling the performance of mathematical operations and rapid data
access. The L2 cache is shared across the GPU, facilitating enhanced data access efficiency. The Memory Controller
oversees communication with external DRAM, guaranteeing efficient data transfer, while the PCIe interface connects
the GPU to other components of the computer, allowing for data exchange between the CPU and GPU.

Defined by Nvidia [4], GPU utilization refers to the percentage of time that certain activities occur during the past
sample period. This can be expressed as:

𝑈𝐺𝑃𝑈 =
𝑇𝑎𝑐𝑡𝑖𝑣𝑒

𝑇𝑡𝑜𝑡𝑎𝑙
(1)

where:

• 𝑈𝐺𝑃𝑈 GPU utilization.
• 𝑇𝑎𝑐𝑡𝑖𝑣𝑒 Active time during which the GPU is performing computations within a given time slice.

Manuscript submitted to ACM



313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

On Efficiency, Fairness and Security in AI Accelerator Resource Sharing: A Survey 7

• 𝑇𝑡𝑜𝑡𝑎𝑙 Total length of the slice.

2.1.2 Neural Processing Unit. NPU have significantly advanced, offering increased computational power and energy
efficiency for AI tasks. They are being integrated into System-on-Chip (SoC) designs for seamless AI processing and are
widely deployed in edge devices like smartphones and IoT gadgets for real-time, on-device AI computations. Leading
implementations include Google’s Edge TPU [2], Apple’s Neural Engine [1], Huawei’s Ascend [3], and Intel’s Movidius
Myriad X, all supporting a range of AI models with enhanced software and ecosystem support. The future of NPUs
focuses on greater scalability, broader AI model compatibility, and improved developer tools.

The architecture of an NPU, similar to Figure 3c, comprises a host for controlling operations, an instruction memory
for storing execution commands, and a vector unit with SMID units and vector registers for parallel processing. The
use of SRAM buffers facilitates rapid data storage, while the systolic array of processing elements (PEs) enables the
efficient execution of matrix operations. Input and output FIFO buffers facilitate a seamless data flow to and from the
systolic array, thereby enabling high-throughput processing, which is well-suited to the demands of large-scale neural
network tasks.

The utilization for NPUs can be defined as the ratio of used PE to the total available PE over a given time slice. The
formula is:

𝑈𝑁𝑃𝑈 =
𝑃𝐸𝑢𝑠𝑒𝑑

𝑃𝐸𝑡𝑜𝑡𝑎𝑙
(2)

where:

• 𝑈𝑁𝑃𝑈 NPU utilization.
• 𝑃𝐸𝑢𝑠𝑒𝑑 Number of PEs actively used during a time slice.
• 𝑃𝐸𝑡𝑜𝑡𝑎𝑙 Total number of PEs available in the NPU.

2.1.3 Tensor Processing Unit. TPU was developed by Google to accelerate machine learning workloads, particularly for
deep learning applications. Introduced in 2016, TPUs [51, 52, 87] are designed to handle the demanding computational
requirements of training and inference for large neural networks. They are optimized for Google’s TensorFlow frame-
work, enabling faster and more efficient execution of machine learning models.

Figure 3b depicts the architectural design of the TPU system, which has been optimized for high-performance deep
learning operations. The system comprises a PCIe interface and a host interface for communication with the host
system, as well as DDR3 interfaces for access to external memory. A first-in, first-out (FIFO) queue buffers data for the
matrix multiply unit, which performs the core matrix computations. The data is organized by the systolic data setup,
stored in a unified buffer, and processed through accumulators. The results then proceed through the activation and
normalization/pooling stages, where non-linear functions and dimensionality reduction are applied, thus optimizing
the TPU for fast and efficient deep learning tasks.

The utilization of TPU is often measured in terms of the matrix processing units, below are the formulas.

𝑈𝑇𝑃𝑈 =
𝑀𝑋𝑈𝑢𝑠𝑒𝑑

𝑀𝑋𝑈𝑡𝑜𝑡𝑎𝑙

(3)

where:

• 𝑈𝑇𝑃𝑈 MXU utilization.
• 𝑀𝑋𝑈𝑢𝑠𝑒𝑑 The number of active MXU cycles (or operations) during a time slice.
• 𝑀𝑋𝑈𝑡𝑜𝑡𝑎𝑙 The total available MXU cycles (or operations) during the same time slice.

Manuscript submitted to ACM



365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Huang et al.

2.1.4 Other AI accelerators. Field Programmable Gate Arrays (FPGAs) [76, 81, 101, 102, 135, 144] are reconfigurable
hardware accelerators that offer high flexibility and parallel processing capabilities. While FPGAs are less common for
large-scale AI training due to their programming complexity and the dominance of GPUs, they have shown increasing
relevance in AI inference tasks, particularly in edge and embedded systems. Their ability to achieve low latency and
power efficiency makes them well-suited for real-time inference scenarios. Application Specific Integrated Circuits
(ASICs) [15, 17–19, 36, 39, 70, 89, 95, 140], designed for specialized tasks, deliver superior efficiency and performance
through hardware-level optimization. While ASICs lack the programmability needed for diverse training workloads,
their deterministic architecture and energy efficiency make them highly effective for inference. DSPs excel in digital
signal processing with low latency and high throughput. Although DSPs are not widely utilized for AI training due to
their limited support for large-scale matrix operations, they are employed in lightweight AI inference tasks, especially
in applications requiring real-time processing and constrained computational resources. Hybrid accelerators combine
multiple accelerator types to handle diverse workloads. However, they are not the primary choice for AI training, where
specialized GPUs and TPUs prevail.

While GPUs and TPUs remain the predominant accelerators for AI training due to their programmability and
computational throughput, accelerators such as FPGAs, ASICs, and DSPs demonstrate significant potential for inference,
particularly in scenarios prioritizing energy efficiency, low latency, and real-time performance. Hybrid accelerators
further broaden the design space for AI inference but remain underexplored for large-scale training.

2.2 Performance Measures for AI Workloads

In the realm of AI accelerators, workloads are primarily categorized into training and inference tasks. These two types
of workloads exhibit distinct characteristics and demands, influencing how AI accelerators are designed and optimized.
This section explores the specific objectives of training and inference workloads, highlights the key performance metrics
for each. It is important to note that we will focus exclusively on metrics that can be optimized through scheduling
technologies. To ensure comprehensive coverage of the literature, the metrics in this study are expressed in a more
generalized form.

2.2.1 Training. Deep learning training tasks involve using large datasets to adjust the model parameters in order to
minimize prediction errors. This process, known as training, requires substantial computational resources and time
because it involves both forward propagation and backpropagation. The model learns by iteratively updating its weights
through multiple epochs until it converges to an optimal set of parameters.

These tasks are characterized by high computational intensity, extensive memory and storage requirements, and
long duration. Key performance metrics for training workloads are show below.

Training Time. Training time, the duration required to complete the entire deep learning model training process, is
critically important for several reasons. The training time is defined in Equation (4). Additionally, optimizing training
time reduces computational and labor costs, especially in cloud environments where resource usage is billed by time,
thus saving significant expenses.

𝑇 =
𝑁 × 𝐸 × 𝐹

𝑃 × 𝐵 × 𝜂
(4)

where:

• 𝑇 The total training time.
• 𝑁 The number of samples in the dataset.

Manuscript submitted to ACM



417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

On Efficiency, Fairness and Security in AI Accelerator Resource Sharing: A Survey 9

• 𝐸 The total number of epochs (training iterations).
• 𝐹 The computational cost per sample for forward and backward propagation, typically proportional to the

model’s complexity.
• 𝑃 The hardware performance, measured in floating-point operations per second (FLOPS). If sharing technologies

involve sharing hardware resources (like accelerators or processors), this can impact hardware performance.
• 𝐵 The batch size, which is the number of samples processed together in one iteration. Sharing data across nodes

or devices could allow for larger batch sizes, which can improve computational efficiency.
• 𝜂 The overall efficiency factor, accounting for I/O performance, memory bandwidth, parallel computation

efficiency, and other overheads. By sharing data buffers and optimizing memory access patterns, sharing
technologies can improve I/O performance and memory bandwidth utilization.

As data scales and model complexity increase, optimizing training time becomes essential for efficiently handling
large datasets and developing complex models. Techniques like efficient scheduling algorithms [43, 83, 112], distributed
training [49, 64, 97], and resources sharing [69, 133, 143] can significantly reduce training times by improving resource
utilization, preventing resource idleness, and ensuring proper task distribution and coordination among nodes.

System Throughput. System throughput, as defined in Equation (5), the rate at which a system processes training
tasks or data samples, is crucial for deep learning training as it accelerates model training, optimizes resource utilization,
reduces costs, and effectively handles large-scale data and complex models. Efficient scheduling technologies, such as
dynamic resource allocation [34, 105, 119] and parallelism [45, 80, 85, 86, 100] significantly enhance throughput. This
leads to faster development cycles, lower operational costs, and better scalability, ultimately advancing deep learning
capabilities and applications.

𝑇𝑝 =

∑𝑛
𝑖=1 𝑅𝑖

𝑇
(5)

where:

• 𝑇𝑝 is the system throughput.
• 𝑅𝑖 is the number of tasks completed in the 𝑖-th interval.
• 𝑇 is the total time taken to complete those tasks. Sharing resources for reducing synchronization overhead and

communication delays can lead to faster task completion.

2.2.2 Inference. Deep learning inference tasks involve using a pre-trained model to make predictions on new, unseen
data. The computational demands for inference are significantly lower compared to training, as it only requires forward
propagation through the already-optimized model. Inference tasks are designed for real-time or near-real-time prediction
and are often deployed on edge devices or servers. The focus during inference is on reducing latency and enhancing
efficiency, making it crucial to optimize for low power consumption and quick response times. Techniques such as
model compression and hardware acceleration are commonly employed to ensure that the inference can run effectively
in resource-constrained environments.

The primary characteristics of inference workloads include latency sensitivity, moderate computational resource
requirements, and high concurrency. Key performance metrics for optimizing inference workloads are summarized
below.

Manuscript submitted to ACM



469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Huang et al.

Latency. Latency, as defined in Equation (6), refers to the time taken from the moment an input is received by the
system until the corresponding output is produced in the context of inference tasks. It is a critical performance metric
for real-time and near-real-time applications. Low latency ensures quick, responsive interactions, timely and accurate
decisions, higher customer satisfaction, and efficient resource utilization. Optimizing for low latency is essential for
delivering high-performance, reliable AI solutions across various domains, enhancing both operational efficiency and
market competitiveness. Low latency systems can also handle a higher number of concurrent users or requests, making
them more scalable. This is crucial for applications with high user traffic or those deployed in cloud environments
where resources must be efficiently managed.

𝐿 = 𝐼 +𝐶 +𝑂 (6)

where:

• 𝐿 is the total latency.
• 𝐼 is the input processing time, which includes data preprocessing and transfer to the accelerator. Techniques

such as shared memory buffers and optimized data pipelines can significantly lower input processing time.
• 𝐶 is the computation time on the accelerator, which includes the forward pass through the neural network.

Sharing accelerator resources more effectively can lead to better utilization of computational power, reducing
the time required for the forward pass through the neural network.

• 𝑂 is the output processing time, which includes data post-processing and transfer back from the GPU.

Methods to optimize latency include using model compression technologies [8, 127], optimizing communication
[71], and leveraging hardware accelerators [124, 136]. These strategies collectively help in achieving the low latency
necessary for superior AI performance.

System Throughput. System throughput in the context of inference tasks refers to the number of inference requests
or data samples the system can process in a given period. It measures the system’s capacity to handle concurrent
tasks and is crucial for evaluating the efficiency and scalability of AI applications. High throughput is essential for
applications with a lot of users, such as online services, real-time analytics, and large-scale IoT deployments. While both
training and inference benefit from high throughput, the optimization technologies and performance metrics differ.

The main approaches to improve system throughput of inference task including resources sharing [37, 46, 134],
requests preemption [23] and Profiling [22].

Power Consumption. Power consumption, as defined in Equation (7), refers to the amount of electrical energy
used by a system to perform AI workloads, including both training and inference tasks. Power consumption is a
critical consideration for AI systems, especially in large-scale data centers, battery-powered edge devices, and energy-
constrained environments. Efficient power usage leads to extended battery life, reduced operational costs, improved
thermal management, and a smaller environmental footprint. By leveraging specialized hardware [25], edge computing
[59, 122], dynamic power management [78], and software optimization [30, 113], it is possible to significantly reduce
the power consumption of tasks, ensuring efficient and sustainable AI deployments across various environments.

𝑃𝑐 =
𝐸𝑡 × 𝑅𝑡

𝜂
(7)

where:
Manuscript submitted to ACM



521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

On Efficiency, Fairness and Security in AI Accelerator Resource Sharing: A Survey 11

• 𝑃𝑐 is the power consumption.
• 𝐸𝑡 is the energy consumption per task. Balancing the load and reducing idle times, which can lower the energy

consumption per task.
• 𝑅𝑡 is the rate of tasks (number of tasks or batches per second). Sharing technologies that enable better parallel

processing can increase the rate of tasks by allowing more tasks to be processed simultaneously.
• 𝜂 is the overall efficiency factor, accounting for hardware and software efficiencies. Ideally, the efficiency is 1,

but in practice it is usually less than 1 due to various losses.

2.3 Key Concepts and Fundamentals

This section examines the fundamental rationale behind AI accelerator sharing, focusing on two key paradigms:
profiling and prediction techniques that analyze workload patterns to optimize resource allocation, and resource
sharing techniques that implement strategies like fine-grained partitioning and virtualization for dynamic workload
management.

2.3.1 Profiling and Predicting Techniques. Profiling and predicting [83, 114, 121, 133] involves collecting detailed
performance data through experiments or simulations before the actual execution of tasks. This data includes metrics
such as execution time, resource utilization, and behavior patterns of the tasks. Based on this profiling data, predictive
models are developed to estimate the performance of tasks under various conditions. These models can use historical
data, statistical methods, or machine learning technologies to provide accurate predictions. The primary goal is to
assist the scheduler in making informed decisions about resource allocation and task scheduling, ensuring efficient and
optimized execution.

2.3.2 Resource Sharing Techniques.

Spatial sharing. Spatial sharing, as show in Figure 4a, refers to the simultaneous utilization of different hardware
resources by multiple tasks within the same system. For instance, different processor cores or distinct sections of an
accelerator can be allocated to different tasks at the same time. This method leverages the parallel execution capabilities
of modern hardware to increase throughput and resource utilization. By distributing tasks across available resources,
spatial sharing aims to minimize idle times and maximize the effective use of computational power. However, it requires
sophisticated resource allocation strategies to prevent conflicts and ensure fair distribution among tasks.

Nvidia offers two distinct spatial sharing methods: Multi-Process Service (MPS) [6] and Multi-Instance GPU (MIG)
[5]. MPS enables the concurrent execution of multiple CUDA applications on a single GPU by establishing a shared
environment that optimizes resource utilization and minimizes latency through parallel execution. However, it necessi-
tates sophisticated scheduling to effectively manage resource contention. MIG partitions a single GPU into multiple
isolated instances, each with dedicated resources such as memory and compute cores. This enables efficient and secure
multi-tenant usage and flexible resource allocation, which are ideal for environments requiring strict resource isolation.
The following section will present a discussion of works employing spatial sharing technologies, with the exception of
MIG and MPS.
Dynamic fine-grained allocation: Dynamic fine-Grained allocation [26, 44, 103, 132] is a method that dynamically
allocates hardware resources at a very granular level to different tasks based on their immediate needs and workload
characteristics as show in Figure 4c. This approach involves continuously monitoring the resource demands of tasks
and adjusting allocations in real-time to ensure optimal utilization. For instance, specific parts of a processing unit such

Manuscript submitted to ACM



573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Huang et al.

(a) Spatial sharing (b) Temporal sharing

(c) Dynamic fine-grained allocation (d) Resources oversubscription and isolation

(e) Preemption and Migration (f) Virtualization

Fig. 4. Related Concepts of accelerator sharing. Note that these also apply to TPU, NPU and other AI accelerator architectures. (d)
shows that four containers are shared among one node and an isolation environment. Due to oversubscription of resources, these
containers can be allocated more than a quarter of the total resources available on the node.

as individual cores or even cache lines, or segments of memory down to the level of cache blocks or individual memory
pages, can be allocated to different tasks as their requirements change. This allows for efficient resource use without
significant overhead. The primary advantage of this method is its flexibility and responsiveness to changing workloads,
which can lead to improved performance and reduced resource wastage. However, it requires sophisticated monitoring
and allocation mechanisms to function effectively.
Resources oversubscription and isolation: Resources oversubscription and isolation [92, 107, 126], as show in Figure
4d, is a strategy where more virtual resources are allocated to tasks than the actual physical resources available, based
on the observation that not all tasks will use their peak resources simultaneously. This approach can significantly
Manuscript submitted to ACM



625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

On Efficiency, Fairness and Security in AI Accelerator Resource Sharing: A Survey 13

increase resource utilization and overall system throughput. However, to ensure that performance does not degrade
during peak demand, isolation mechanisms are implemented. These mechanisms guarantee that critical tasks have
access to necessary resources when needed, preventing interference from other tasks.

Temporal sharing. Temporal sharing [68, 69], as show in Figure 4b involves the sequential sharing of the same
hardware resource by multiple tasks over different time periods. In this approach, tasks are assigned specific time slices
during which they can use the resource exclusively. Once a task’s time slice is over, the resource is allocated to another
task. This time-multiplexing strategy allows for dynamic adaptation to changing task demands and can enhance overall
resource utilization. However, it can also introduce overhead due to context switching, where the state of a task is saved
and restored repeatedly, potentially affecting execution efficiency.
Preemption and Migration: Figure 4e illustrates the concepts of preemption and migration in GPU task scheduling,
two pivotal strategies used to address resource contention and improve overall system performance. These techniques
are particularly important in handling dynamic and mixed workloads, such as combining real-time inference tasks with
long-running training jobs. By reallocating or redistributing tasks, they ensure that high-priority or latency-sensitive
tasks are given timely access to computational resources, while maintaining overall system efficiency and balance.

Preemption [38, 124] allows AI accelerators to interrupt lower-priority tasks to allocate resources to higher-priority
tasks, such as real-time inference, improving responsiveness and resource efficiency. However, it introduces context
switching overhead and requires sophisticated scheduling.

Migration [104] involves moving tasks between computational units within AI accelerators to balance load, optimize
energy efficiency, and manage thermal conditions. While it enhances resource utilization and performance, it also
introduces latency and complexity in data management.
Virtualization: Virtualization [54, 56, 58, 74], as show in Figure 4f involves creating virtual instances of hardware
resources that can be allocated to tasks as needed. This method abstracts the physical hardware, allowing multiple
tasks to run on the same physical resource as if they each had their own dedicated hardware. Virtualization enables
efficient resource sharing, isolation, and flexibility in resource allocation. It also simplifies the management of resources
by providing a consistent interface regardless of the underlying hardware. Virtualization can improve security and
fault isolation, as tasks running in separate virtual environments are less likely to interfere with each other. However,
virtualization introduces some overhead due to the need for a hypervisor or virtual machine manager to coordinate and
manage the virtual instances.

Spatio-temporal sharing. Spatio-Temporal Sharing [22, 37, 46] combines the principles of both spatial and temporal
sharing to optimize resource utilization in two dimensions. Tasks are allocated to different resources concurrently
(spatial sharing) while also being scheduled to share the same resources at different times (temporal sharing). This hybrid
approach aims to fully exploit the capabilities of modern multi-core and multi-accelerator systems, achieving high
levels of efficiency and performance. While it offers significant benefits in terms of flexibility and resource optimization,
it also demands more complex and sophisticated scheduling algorithms to manage the dual dimensions of sharing
effectively.

3 EFFICIENCY-ORIENTED AI ACCELERATOR SHARING

As highlighted in Figure 2, this section focuses on efficiency as a central goal in resource sharing for AI accelerators,
emphasizing key metrics such as time, latency, throughput, and cost. Efficiency is a crucial objective in scheduling
optimization, particularly for AI accelerators, where different aspects, including time, cost, and system throughput,

Manuscript submitted to ACM



677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Huang et al.

Table 3. Summary of Studies on Efficiency-oriented Sharing under DL Training Workloads

Year Name Obj. Approaches Claimed Effect Dev. Exp.T Exp.S Code

2024 Parcae[29] ★ Profiling and Predicting Better System robustness;Throughput 10x ↑ G R 32 V100 ✓

2023

TGS[117] ♠ Dynamic Fine-grained Allocation Throughput 15x ↑ G R 2 A100 ✓

Layer-Puzzle[34] ♠ Profiling and Predicting PE Utilization 1.95x ↑ N S SCALE-Sim -

V10[124] ♠★♣ Fine-grained Preemption NPU Utilization 1.64x ↑;Throughput 1.57x ↑;
Latency 1.56x ↓ N S - -

Flexer[82] ♦ Out-of-Order Scheduling JCT 2.2x ↓ N R 8 NPU -

DM-NPU[21] ♠★ Dynamic Fine-grained Allocation Throughput 10.8-27.8%↑;PE Utilization 2.68x↑ N S - -

2022

MAGMA[55] ★♠ Dynamic Fine-grained Allocation Throughput 1.4-1.6x ↑ A R 6 Accelerator ✓

Muri[143] ♦♠ Dynamic Fine-grained Allocation JCT 3.6x ↓;Makespan 1.6x ↑ G R 64 V100 ✓

Synergy[83] ♦♠ Profiling and Predicting JCT 3.4x ↓ G R 32 V100 ✓

DISC[69] ♦ Time Slicing JCT 1.15x ↓;Accuracy 1.58x ↑ G R 15 GPU -

NeiDty[28] ♦ Dynamic Fine-grained Allocation JCT 10% ↓ G S Gem5-GPU -

Miso[62] ♦ Prediction and Dynamic Partitioning JCT 16-49% ↓ G R 8 A100 -

Arax[91] ♦ Dynamic Migration JCT 20% ↓ G & F R
Arria 10
RX550X

RTX 2080Ti
-

2021

Zico[67] ♠★ Dynamic Fine-grained Allocation Throughput 1.6-8.3x ↑ G R V100;2080Ti -

OM[33] ♠ Profiling and Predicting 125-150% Memory Oversubscription G S GPGPU-Sim -

Layerweaver[88] ♠★ Dynamic Fine-grained Allocation NPU Utilization 44% ↑;Throughput 60.1% ↑ N S MAESTRO[90] -

2020

TVT[54] ♠ Tensor Virtualization Reduce DRAM writes 2x N S - -

Salus[132] ♦♠ Dynamic Fine-grained Allocation JCT 3.19x ↓;GPU Utilization 2.38x ↑ G R 2 P100 ✓

CPPE[133] ♦ Predict and Oversubscription JCT 1.56-1.64x ↓ G S Gem5-GPU -

SIGMA[95] ♠ Dynamic Fine-grained Allocation Utilization 3-5.7x ↑ A R SIGMA Engine -

2018
MASK[9] ★♥ Low-overhead Virtual Memory Throughput 58.7% ↑;Unfairness 22.4% ↓ G S Mosaic -

Gandiva[118] ♠♣ Dynamic Migration GPU Utilization 26% ↑ G R 180 P100&P40 -

Obj.(Objectives): ★(Throughput) ♠(Utilization) ♣(Latency) ♦(Job Completion Time) ♥(Fairness) Dev.(Device Type): G(GPU)
N(NPU) F(FPGA) A(ASIC) Exp.T(Experiment Type): R(Real Cluster) S(Simulation) Exp.S(Experiment Scales): the scale of
physical cluster. -:not clearly specified

must be considered. Due to the distinct characteristics of training and inference workloads, the section categorizes
these workloads to discuss their efficiency strategies. Training optimization focuses on reducing time while maximizing
throughput, whereas inference prioritizes low latency and high throughput. Additionally, mixed-use scenarios where
training and inference coexist are examined, with an analysis of the associated trade-offs and synergies.

3.1 Efficiency of Training

The efficiency of AI accelerator sharing technology has significant implications for training workloads. As outlined in
Sec 2.2.1, we categorize these works focusing on training workloads by time and throughput. Training time is a critical
metric in machine learning as it directly impacts the speed at which models can be developed and deployed. Faster
training times mean quicker iterations and faster turnaround from model conception to implementation. Throughput
measures the number of tasks or operations completed in a given period. Higher throughput indicates a system’s
capability to process more data or train more models simultaneously. At the conclusion of this section, we will present
insights gleaned from these works. A summary of these works is provided in Table 3.

3.1.1 Execution Time. The concept of time efficiency is defined in Sec 2.2.1. One of the most effective methods for
enhancing time efficiency is to share computing and memory resources. With regard to the GPU computing resources,
Synergy [83] emphasizes scheduling and sharing various types of computational resources (such as GPUs, FPGAs, and
TPUs) in a multi-tenant cluster environment. It utilizes a new near-optimal online algorithm to perform multi-resource,
workload-aware assignments. DISC [69] only focuses on GPU time sharing to optimize hyperparameter tuning processes.
Manuscript submitted to ACM



729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

On Efficiency, Fairness and Security in AI Accelerator Resource Sharing: A Survey 15

It leverages dynamic priority scheduling and real-time load monitoring to improve resource utilization. Unlike the
time-share mechanism, Salus [132] introduces fine-grained GPU sharing mechanisms that support concurrent execution
of multiple deep learning tasks on the same GPU. It emphasizes fine-grained resource allocation, concurrent execution,
and resource isolation. Muri [143] considers optimizing overall training efficiency by interleaving multiple types of
computational resources (CPU, GPU, memory, storage). It emphasizes multi-resource interleaving, resource partitioning,
and dynamic resource scheduling. Gandiva’s [118] Key methodologies encompass time-slicing GPUs across multiple jobs
for the purpose of low-latency feedback, dynamic migration to improve locality and efficiency, and adaptive resource
allocation through packing and grow-shrink mechanisms. This approach enhances early feedback, increases cluster
utilization by 26%, and accelerates hyper-parameter searches, achieving up to a 10x speedup in certain tasks. Miso [62]
leverages performance prediction to dynamically allocate NVIDIA Multi-Instance GPU (MIG) resources, optimizing
workload placement and ensuring fairness in multi-tenant GPU clusters. Arax [91] is a runtime framework that
decouples applications from heterogeneous accelerators, enabling dynamic task mapping, efficient accelerator sharing,
and elastic resource allocation, while providing a simple API for transparent and adaptable accelerator utilization. All
these methods use sharing of computing power to improve time efficiency.

From the perspective of GPU memory resources, several perspectives can be optimized, a multitude of potential
avenues exist for optimization, encompassing Translation Lookaside Buffer (TLB) sharing, inter-GPU and inter-host
memory sharing, and memory oversubscription. NeiDty [28] reduces translation latency and improves GPU performance
by sharing address translation results between different TLBs. CPPE [133] presents a coordinated page prefetch and
eviction mechanism for managing memory oversubscription in GPUs.

Flexer [82] introduces an out-of-order scheduling mechanism in NPU that allows tasks to execute out of their
submission order. This strategy dynamically adjusts the execution order of tasks based on their dependencies and
resource requirements. MAGMA [55] proposes an optimization framework that uses intelligent algorithms to map
multiple deep neural network (DNN) tasks onto multiple accelerator cores. DM-NPU [21] present Dataflow Mirroring
technical, which involves replicating data flows to allow shared data paths amongmultiple tasks and enables fine-grained
spatial multitasking on systolic-array NPUs by optimizing data flow control. TVT [54] focuses on CNN Accelerators
and it proposes Tensor Virtualization abstracts tensor data into virtual tensors, optimizing data storage.

3.1.2 System throughput. Higher system throughput will make the AI accelerator full occupied to increases the
utilization, reflecting the overall efficiency and processing capacity of the system.

Prediction and profiling are critical approaches to increase training throughput. Parcae [29] employs an availability
predictor to forecast future instance preemptions. By predicting which instances are likely to be preempted in advance,
the system can proactively adjust and minimize the impact of preemption. Similarly, OM [33] leverages the output
of a transformer model to accurately perform prefetching and pre-eviction by monitoring and predicting memory
usage. TGS [117] overcomes the limitations of native Kubernetes by intercepting each Docker’s kernel commits. TGS
maintains high GPU utilization through continuous monitoring and adaptive kernel rate control.

An effective methodology for memory sharing will serve to decrease the latency associated with memory access.
MASK [9] redesigns the GPU memory hierarchy, including cache, TLBs, and page table, and monitors the demand
of each application to allocate appropriate memory capacity and enable fast recovery of idle memory. Mean while it
improves the cache coherency protocol to ensure fast synchronisation when multiple applications access the same data,
reducing conflicts caused by inconsistent data. Unlike MASK [9] involves modifications to the GPU memory hardware
architecture, SMM [125] focuses primarily on the software level. It allows multiple thread blocks to share the same

Manuscript submitted to ACM



781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Huang et al.

shared memory region simultaneously. Meanwhile, it interleaves memory data into different memory banks so that
thread blocks accessing memory concurrently can operate on different memory banks. Zico [67] proposes a shared
memory pool and uses an on-demand memory allocation mechanism to optimize memory management.

In the context of NPUs or other accelerator, researchers often share resources at the layer level to increase utilization.
Layerweaver [88] dynamically adjusts the execution order of layers by analyzing the different computational require-
ments and dependencies of each neural network layer. Layer-Puzzle [34] leverages layer heterogeneity and fine-grained
task division to allocate different computing tasks to the most suitable NPU cores. The most advanced approach,
V10 [124], employs preemptive multi-tasking, enabling time-sharing of an NPU core by preempting workloads at the
task level. V10 uses preemption to balance the utilization between the Systolic Array and the Vector Unit, addressing
operator imbalances and enhancing overall efficiency. SIGMA [95], an ASIC chip, employs flexible interconnects and
distributed dataflow to enable efficient sharing of compute and memory resources, optimizing sparse and irregular
GEMM operations for diverse deep learning workloads.

3.2 Efficiency of Inference

Training involves iterative, computationally intensive tasks where reducing training time and maximizing throughput
are crucial, achieved through optimized resource utilization and parallel processing. In contrast, inference focuses on
real-time or near-real-time predictions, where low latency and high throughput are paramount. Latency is the time
taken for an inference request to be processed from input to output. Low latency is crucial for real-time applications
such as autonomous driving, online recommendations, and interactive AI systems, where delays can impact user
experience and system effectiveness. High throughput is important for applications that need to handle a large volume
of requests simultaneously, such as cloud-based AI services and large-scale deployment scenarios. These works are
classified according to their impact on the efficiency of inference workloads, with a focus on latency and throughput,
as outlined in Sec 2.2.2. The exclusion of energy is justified by the fact that it is not the most prevalent factor in the
sharing of technologies. Table 4 provides a detailed overview of these works.

3.2.1 Latency. Latency is the time delay between the input being provided to the system and the output (or result)
being received.

Monitoring are the most common methods for improving efficiency in inference workloads. Gost [134] employs a
monitoring system to track both spatial and temporal utilization of GPU resources, thereby enabling adaptive resource
allocation for network function virtualization. In addition, the monitoring system in SPLIT [75] focuses on tracking
the performance and resource usage of individual chunks, ensuring that Quality of Service (QoS) requirements are
met. It uses a different strategy by splitting DNN models into equally sized chunks and scheduling these chunks for
inference. H3M [135] introduces a coordinated FPGA framework that integrates heterogeneous sub-accelerators, layer-
wise scheduling, and dynamic mapping strategies, leveraging real-time workload monitoring to optimize multi-DNN
execution, achieving up to 7.5× Energy-Delay Product (EDP) reduction compared to state-of-the-art accelerators.

Different from monitoring, PREMA [23] introduces a predictive scheduling algorithm for NPUs that supports
preemption, which make it suitable for environments where tasks have varying execution times and need to be
managed dynamically to optimize performance. In contrast, Baymax [14] optimizes non-preemptive accelerators by
focusing on QoS. This involves predicting the duration and resource requirements of tasks to avoid conflicts due to
the non-preemptive nature. In addition, it addresses queueing delays for computational resources by implementing a
runtime system that orchestrates the execution of computing tasks from different applications. DGSF [32] introduces a
Manuscript submitted to ACM



833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

On Efficiency, Fairness and Security in AI Accelerator Resource Sharing: A Survey 17

Table 4. Summary of Studies on Efficiency-oriented Sharing under DL Inference Workloads

Year Name Obj. Approaches Claimed Effect Dev. Exp.T Exp.S Code

2024
Llumnix[104] ♣ Preemption and Migration latency 1.5x ↓;Cost 36% ↓ G R 16 Nvdia A10 ✓

vFPGA_layer[81] ★ Virtualization Throughput 2.31-3.96x ↑ F R Alveo U250 -

ParvaGPU[60] ♠❡ Dynamic Fine-grained Allocation GPU Usage 12.5%↓with No SLO Violations G R 8 A100 -

2023

Gost[134] ♣★ Profiling and Predicting Minimize the End-to-End Latency G R 1 2080 -

FaST-GShare[37] ★♠ Spatio-temporal Sharing Throughput 3.15x ↑;GPU utilization 1.34x ↑ G R 4 V100 -

SPLIT[75] ♣ Profiling and Predicting Latency Violation Rate 43% ↓;Jitter 69.3% ↓ G R Jetson Nano ✓

KRISP[24] ★ Profiling and Predicting Throughput 2x ↑;Energy 33% ↓ G R AMD MI50 GPU -

H3M[135] ♣ Dynamic Fine-grained Allocation Energy-Delay-Product 3.6-7.5x ↓ F R Xilinx U200; U280 -

2022
Gpulet[22] ★ Spatio-temporal Sharing Throughput 61.7% ↑ G R 4 2080Ti ✓

REEF[38] ★ Preemption Preemption Latency12.3x↓;Throughput7.7x↑ G R AMD MI50 GPU ✓

DGSF[32] ♠♣ Virtualization Latency 53% ↓; GPU Utilization 16% ↑ G R 8 V100 -

2020
PREMA[23] ❡♣★ Profiling and Predicting SLA Satisfaction 4.8x ↑;Latency 1.4x ↓ N S - ✓

Optimus[76] ★ Spatio-temporal Sharing Throughput 1.98-7x ↑ F R Intel HARP -

GSLICE[26] ★♠ Dynamic Fine-grained Allocation GPU Utilization 1.6-9x ↑;Throughput 2-13x ↑ G R 1 V100 -

2019 ETC[63] ♠★ Preemption GPU Memory Utilization 60-270% ↑ G S Mosaic -

2018
TSM[46] ★ Temporal and Spatial Multiplexing GPU utilization 5x ↑ G R 1 V100 -

gScale[123] ★ Dynamic Fine-grained Allocation Virtual GPU 5x in Linux;4x in Windows G R - -

2016
Baymax[14] ♠♣ Profiling and Predicting 99%-ile Latancy 195x ↓;Utilization 91.3% ↑ G R Nvidia K40 -

EIE[39] ★ Weight Share Throughput 2.9x↑;Energy 19x↑ to [17] A S - -

Cambricon-X[140] ♣ Dynamic Fine-grained Allocation Latency 1.9-4.3x ↓ A S - -

Obj.(Objectives): ★(Throughput) ♠(Utilization) ♣(Latency) ❡(SLA: Service Level Agreements) Dev.(Device Type): G(GPU)
N(NPU) F(FPGA) A(ASIC) Exp.T(Experiment Type): R(Real Cluster) S(Simulation) Exp.S(Experiment Scales): the scale of
physical cluster. -:not clearly specified. Service Level Agreement: It is a commitment between a service provider and a client that
defines specific performance metrics, such as response time, throughput, and availability, which the service must meet.

disaggregated GPU resource-sharing framework for serverless functions, enabling efficient and low-latency inference
by dynamically allocating and consolidating GPU resources across multiple functions using a virtualized GPU pool.
Cambricon-X [140] leverages a PE-based architecture with efficient indexing and asynchronous processing to optimize
computation and memory handling for sparse neural networks.

3.2.2 System throughput. KRISP [24] and GSLICE [26] both employ spatial partitioning to divide GPU resources
among multiple tasks. However, there are key differences between them. KRISP [24] uses predictive models to forecast
the resource needs of each kernel and dynamically adjusts the resources allocated to each kernel based on real-time
requirements. This approach allows KRISP to operate at the kernel level, focusing on the specific needs of individual
kernels within DNN models. GSLICE [26], on the other hand, employs both static and dynamic partitioning of GPU
resources. This ensures that tasks do not interfere with each other by managing the allocation of GPU partitions
at the task level. However, KRISP’s fine-grained, kernel-level resource allocation contrasts with GSLICE’s task-level
management, highlighting their different approaches to achieving similar goals. vFPGA_layer [81] proposes a full-stack
solution for enabling multi-tenancy on FPGAs, featuring an intra-FPGA virtualization layer, memory segmentation,
and a network-on-chip architecture, achieving up to 3.96× throughput improvement in isolated settings while ensuring
secure resource sharing and high-quality service.

Gpulet [22] and FaST-GShare [37] both utilize spatio-temporal sharing technologies to optimize GPU usage, but they
cater to different environments. While the former is geared towards multi-GPU servers with a focus on heterogeneous
models, the latter is designed for the flexibility and scalability requirements of serverless computing environments.
Optimus [76] introduces a hypervisor for shared-memory FPGA platforms, enabling secure and efficient resource
sharing through spatial and temporal multiplexing, with key techniques like page table slicing for DMA isolation, a

Manuscript submitted to ACM



885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Huang et al.

multiplexer tree for interconnect management, and a preemption interface for workload flexibility. Furthermore, TSM
[46] integrates both spatial and temporal aspects into scheduling. It introduces dynamic query batching, which groups
multiple execution kernels from disjoint DNN graphs into larger super-kernels. This approach allows for the scalable
execution of hundreds of models on a single GPU by leveraging CUDA streams and inter-model batching, thereby
optimizing both latency and throughput.

Besides spatial and temporal sharing, gScale [123] introduces two innovative mechanisms: the Private Shadow
Graphics Translation Table (GTT) and Ladder Mapping with Fence Memory Space Pool. These mechanisms allow the
GPU to access physical memory directly, effectively bypassing global graphics memory constraints. ETC [63] presents
three key technologies: eviction, throttling, and compression. Eviction involves proactively removing less critical data
from GPU memory to free up space for more urgent data. Throttling controls the rate at which data is processed to
prevent memory overload. Compression reduces the size of data stored in GPU memory, maximizing the available space
and improving overall efficiency. REEF [38] takes two steps to improve throughput, which are reset-based preemption
and dynamic kernel padding. The preemption mechanism allows tasks to be interrupted and resumed with minimal
delay, facilitating concurrent execution. The dynamic kernel padding enhances the ability to handle multiple concurrent
DNN tasks on a single GPU. EIE [39] presents a specialized inference engine that has been optimized for the operation
of compressed deep neural networks. This engine leverages the concept of weight sparsity and on-chip processing.

3.3 Efficiency of Mixed Workloads

Sharing AI accelerators for mixed workloads presents several challenges due to the differing characteristics and
requirements of training and inference tasks. The key difficulties lie in balancing the conflicting demands for resources
between training and inference tasks, dynamically managing workload variations, maintaining low latency for inference,
optimizing overall efficiency, and handling the added infrastructure complexities and overheads. This section categorizes
approaches for both training and inference workloads based on three factors: time, cost, and throughput. Table 5 provides
a comprehensive overview of the detailed information presented.

3.3.1 Execution Time. Since training and inference tasks have different resource requirements and execution times, the
scheduling systemmust adapt in real-time to these changes tomaintain high time efficiency. Sparse-DySta [31] effectively
recognizes and exploits sparsity in DNN workloads to minimize unnecessary computations, thereby accelerating task
execution. Conversely, IGS-TLB [44] concentrates on hardware-level optimizations, specifically TLBs sharing. Although
it does not directly address scheduling algorithms, it enhances time efficiency by reducing memory operation latency.
DeepBoot [20] designs adaptive task scaling(ATS) algorithm to utilize idle GPUs in the inference cluster for the training
DLTs and implements auto-fast elastic(AFE) to reduce the restart overhead by inference GPU reclaiming.

RealArch [114] includes estimation models that predict the execution time and resource requirements for different
DNN tasks. And then its real-time scheduling algorithm, which prioritizes tasks based on their deadlines and resource
needs, dynamically maps tasks to the available cores, balancing the load and reducing contention. OaSM [7] present a
overlap-and-save method which reduces redundant calculations by dividing the input data into overlapping segments,
processing each segment separately, and then combining the results. The approach leverages the fast shared memory
available on GPUs to store intermediate data. AVEC [56] framework virtualizes GPU resources by intercepting API
calls from applications and redirecting them to remote GPU accelerators. This allows lightweight devices to offload
computationally intensive tasks to more powerful GPUs located either in the cloud or at the edge. The use of containers
ensures that applications can be easily migrated and managed across different nodes in the network.
Manuscript submitted to ACM



937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

On Efficiency, Fairness and Security in AI Accelerator Resource Sharing: A Survey 19

Table 5. Summary of Studies on Efficiency-oriented Sharing under DL Mix Workloads

Year Name Obj. Approaches Claimed Effect Dev. Exp.T Exp.S Code

2023

FGD[116] ♠✸ Dynamic Fine-grained Allocation Unallocated Resources by Fragmentation 49% ↓ G S 6.2k GPU ✓

HRP[99] ★ Dynamic Fine-grained Allocation Throughput 1.87x ↑ G R 1 A100 -

AuRORA[58] ★♥ Virtualization SLA Satisfaction 2.02x ↑;Throughput 1.33x ↑ G R - ✓

IGS-TLB[44] ★ Dynamic Fine-grained Allocation L1 TLBs Hit Rate 18% ↑ G S Gem5-GPU -

Sparse-DySta[31] ♣ Dynamic Fine-grained Allocation Latency Violation Rate 10% ↓ G R RTX 2080 ✓

AVEC[56] ♠★ Accelerator Virtualization Latency 7x ↓ G R 3 GPU -

RealArch[114] ♠ Profiling and Predicting Latency 2.16-8.54x ↓ N R - ✓

FPGAPooling[144] ♦ Dynamic FPGA allocation Avg JCT 7x ↓; Tail JCT 4x ↓ F R & S 3 Xilinx
xc7vx690t -

2022
gOver[126] ✸ Dynamic Oversubscription Cost 20% ↓ G R Intel NUC Kit -

DeepBoot[20] ♦ Dynamic Fine-grained Allocation JCT 32-38% ↓ G R & S 8 Nvidia P40 ✓

2021
MIG-serving[106] ✸ Dynamic Fine-grained Allocation Save 40% GPU G R & S 24 A100 -

Gemini[12] ★ Profiling and Predicting Performance Overhead Less than 5% G R 1 V100 ✓

CPSpatial[48] ★♣ Preemption Preemption Latency 87.3% ↓;Throughput 1.43x ↑ G R AMD Radeon VII ✓

2020

KubeShare[129] ♠★ Dynamic Fine-grained Allocation Throughput 2x ↑ G R 32 v100 ✓

AntMan[119] ♠ Dynamic Fine-grained Allocation GPU Memory Utilization 42% ↑;Computation Utilization 34%↑ G R 64 V100 GPU ✓

AvA[131] ♠✜ Virtualization Virtualize 9 Accelerators and 11 Framework APIs G R 4 GPU ✓

PERSEUS[61] ✸ Dynamic Fine-grained Allocation Cost 12% ↓ G S Nvidia TensorRT ✓

OAS[7] ♠ Dynamic Fine-grained Allocation Improve Memory Share G R P100, P4, TitanV ✓

2018
FELIPE[142] ★ Virtualization Throughput 19.7-21.5% ↑ G R 2 GPU -

G-NET[139] ★♣ Dynamic Fine-grained Allocation Throughput 70.8% ↑;Latency 44.3% ↓ G R TITAN X -

2017 Maestro[90] ★ Dynamic Fine-grained Allocation Throughput 12.9-20.2% ↑ G S GPGPU-Sim -

2016
vDNN[98] ♠ Memory virtualization Reduce GPU Memory Usage 89-95% ↓ G R Titan X ✓

Eyeriss[18] ✸ Row-Stationary (RS) Dataflow Energy Consumption per Operation 1.4-2.5x ↓ A S - -

Obj.(Objectives): ★(Throughput) ♠(Utilization) ♣(Latency) ♦(Job Completion Time) ✸(Cost) ♥(Fairness)✜(Interference)
Dev.(Device Type): G(GPU) N(NPU) F(FPGA) A(ASIC) Exp.T(Experiment Type): R(Real Cluster) S(Simulation)
Exp.S(Experiment Scales): the scale of physical cluster. -:not clearly specified

In addition to GPU-related work, the sharing of certain accelerators (e.g., FPGA, ASIC) has also been demonstrated
to accelerate AI workloads. FPGAPooling [144] introduces a centralized FPGA resource pooling framework that
dynamically allocates and shares FPGA accelerators among multiple tenants, addressing the inefficiency of static
allocation in cloud environments. FPGAPooling improves the average and tail job completion time by up to 7 and 4
times, respectively.

3.3.2 Cost. The objective of cost-effective scheduling of mixed deep learning workloads is to achieve a balance between
performance and cost. A number of recent studies use dynamic scaling and resource allocation technologies that adjust
to real-time demand, with the aim of enhancing cost efficiency. GOver [126] introduce an economy-oriented approach
to GPU virtualization, which leverages dynamic and adaptive oversubscription. AntMan [119] automatically scales
GPU resources up or down based on real-time workload demands. Concurrently, it incorporates cost-awareness in
scaling decisions, thereby reducing unnecessary expenditures on GPU resources during low-demand periods. FGD [116]
presents Fragmentation Gradient Descent as a method for the management and reduction of memory fragmentation in
GPU-sharing workloads. Eyeriss [18] leverages a row-stationary dataflow to optimize energy efficiency in convolutional
neural networks by minimizing data movement and maximizing local data reuse on a spatial architecture.

The majority of these alternative approaches concentrate on enhancing the efficacy of GPU virtualization, minimizing
overheads, and optimizing resource allocation to reduce costs. AvA [131] implements technologies to reduce the overhead
associated with GPU virtualization and Uses hardware-assisted virtualization and optimized software stacks to achieve
lower latency and higher throughput. Unlike that, vDNN [98] virtualizes deep neural networks to achieve scalable and
memory-efficient neural network design.

Manuscript submitted to ACM



989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Huang et al.

Beside these works, numerous research studies implement adaptive scheduling strategies that optimize resource
utilization and cost based on workload characteristics. MIG-serving [106] employs a dynamic reconfiguration of GPU
instances based on current workload, avoiding over-provisioning and reducing costs. PERSEUS [61] analyzes the
trade-offs between performance and cost in multi-tenant environments and implements scheduling strategies that
consider the specific needs and costs of different tenants.

3.3.3 System throughput. A number of studies concentrate on the administration of GPU resources in multi-tenant
settings. AuRORA [58] employs virtualization technologies to abstract physical accelerator resources into Virtual
Accelerator Instances (VAIs), which can be allocated to different tenants as needed. Concurrently, it continuously
monitors the usage of each virtual accelerator instance and adjusts resources according to load changes. Gemini
[12] detects and characterizes the burstiness of GPU workloads by analyzing their execution patterns. This helps in
understanding how workloads can be interleaved without causing significant performance degradation. The system
ensures that high-priority or bursty workloads receive sufficient resources while allowing low-priority or less bursty
workloads to utilize the remaining capacity. KubeShare [129] includes a GPU device plugin for Kubernetes, which
abstracts the physical GPUs into logical GPU slices. The mechanism allows GPUs to be divided into smaller, shareable
units (slices) that can be allocated to different containers based on their requisite specifications.

A significant body of literature emphasizes the importance of dynamically adjusting resource allocation to meet the
needs of different tasks. HRP [99] divides GPU resources into multiple hierarchical levels, each representing different
granularity of resource partitions. Furthermore, a reinforcement learning model is employed to facilitate dynamic
adjustments in resource allocation at each hierarchical level. The reinforcement learning model continuously optimizes
resource allocation strategies by observing task performance and feedback. Similarly, G-NET [139] ensures that the
GPU is kept busy by dynamically scheduling GPU kernels from different network functions. The dynamic partitioning
of GPU resources in Maestro [90] entails the continuous monitoring of task performance and resource usage, adapting
resource allocations in real-time based on current demands, and using a feedback loop to refine and optimize allocations.

Simiarly, Fine-grained resource sharing [48, 142] is a common strategy for improving system throughput. In contrast
to CPSpatial [48], which focuses on dividing the GPU into partitions and using preemption to manage task priorities,
FELIPE [142] focuses on creating vGPUs and fine-grained scheduling of these virtual resources.

3.4 Discussion

In summary, optimizing resource-sharing efficiency in AI accelerators involves a variety of methodological approaches,
each achieving varying levels of success. Figure 5 highlights optimization improvements across key metrics, ranging
from 1.2x to 15x. For job completion time (JCT) and latency optimization, solutions such as REEF and AIFM deliver
significant gains of 12.3x and 7x respectively, particularly in inference workloads. In terms of utilization and throughput,
methods like TGLS and GSLICE demonstrate remarkable improvements of up to 15x and 13x. The subsequent discourse
will meticulously examine the most salient points delineated in this section.

Dynamic fine-grained allocation and profiling & predicting are most common approaches for efficient
sharing. As illustrated in Figure 5, the majority of the work utilizes that two approaches to optimize the accelerator.
These methodologies result in enhanced operational efficacy by guaranteeing that tasks are not postponed due to
inadequate resources. The reduction of latency is achieved by ensuring that high-priority tasks are allocated the requisite
computational resources without delay. Furthermore, they contribute to the enhanced efficiency of AI systems by
ensuring that resources are neither underutilized nor overcommitted, thereby maintaining an optimal balance that
Manuscript submitted to ACM



1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

On Efficiency, Fairness and Security in AI Accelerator Resource Sharing: A Survey 21

(a) JCT and Latency

(b) Utilization and Throughput

Fig. 5. Summary of Efficiency Optimization of Metrics. The optimization results for some works are a range interval, and we have
chosen the maximum of the range to show here.

enhances system throughput and responsiveness. This results in a more seamless and dependable operation of AI
services, particularly in environments with dynamic and varied workloads, which aligns more closely with production
environments characterized by large and complex workloads.

Manuscript submitted to ACM



1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Huang et al.

Inference Workloads Achieve Superior Optimization Compared to Training. The optimization of inference
workloads generally surpasses that of training workloads, as shown in the Figure 5 where inference consistently achieves
higher gains across key metrics. This can be attributed to inference’s more predictable and lightweight computational
patterns, which allow for more effective resource scheduling and management. In contrast, training workloads, often
characterized by higher complexity and variability, show relatively modest improvements, particularly in systems
employing fine-grained resource allocation and dynamic optimization strategies.

NPUs and TPUs have become increasingly popular as AI accelerators for efficient shared environments.
Since 2023, the evolution of chips dedicated to deep learning has accelerated significantly, leading to a surge in research
focused on optimizing the performance of NPUs [34, 82, 124] and TPUs. These processors have a simpler architecture
compared to GPUs, and their openness to a wider range of internal hardware interfaces enables more nuanced resource
sharing. This, in turn, enhances the efficiency of data sharing. As NPU computational capabilities continue to expand, it
is expected that even more researchers will delve into this field, further advancing the technology.

It is very common to consider system throughput as the main objective. This focus on system throughput
aims to maximize the number of tasks processed within a given timeframe, which is crucial for improving the overall
efficiency and performance of AI systems. By prioritizing throughput, researchers can ensure that AI accelerators like
GPUs and TPUs are used to their fullest potential, handling multiple tasks simultaneously and reducing idle times.
This approach not only enhances the productivity of AI systems but also makes them more scalable and responsive
to varying workload demands. As a result, achieving high system throughput is a key goal in optimizing resource
allocation and utilization in shared AI accelerator environments.

Optimizing Efficiency Requires Simultaneous Consideration of User Experience. Optimizing efficiency in GPU
accelerator scheduling requires a careful balance between maximizing resource utilization and maintaining a positive
user experience. While achieving high throughput and low latency is critical for efficiency, it is equally important
to ensure that user-centric metrics, such as responsiveness and fairness, are not compromised. Modern scheduling
algorithms must account for diverse workloads with varying priorities, from real-time inference tasks to large-scale
training jobs. For example, PREMA[23] achieves a 1.4x increase in throughput alongside a 4.8x improvement in SLA
satisfaction, illustrating that it is possible to enhance system performance without compromising service quality.
This underscores the need to consider both efficiency and user experience in scheduling strategies, particularly when
addressing challenges like worst-case latency or percentile guarantees (e.g., P95 or P99 latency), which are critical for
maintaining user satisfaction.

Shared accelerator clusters, not individual devices, are now an efficient way to train LLMs. Shared accelerator
clusters have become a preferred method for training LLMs[50]. By leveraging multiple devices in a distributed setup,
they reduce training time and optimize resource utilization. Techniques like tensor and pipeline parallelism divide
computations across devices, overcoming memory bottlenecks and enabling the training of larger models. Compared to
single devices, shared clusters provide greater scalability and efficiency, making them indispensable for modern AI
workflows.

4 RISING CONCERNS IN AI ACCELERATOR SHARING

As shown in Figure 2, this section delves beyond the realm of efficiency, encompassing critical concerns such as fairness,
interference, and security in the context of AI accelerator resource sharing. It explores the impact of computing and
Manuscript submitted to ACM



1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

On Efficiency, Fairness and Security in AI Accelerator Resource Sharing: A Survey 23

Table 6. Summary of Studies on Non-Efficiency-Oriented Sharing under DL Workloads

Year Name Obj. Approaches Claimed Effect Dev. Exp.T Exp.S Code

2024
Orion[103] ✜ Dynamic Fine-grained Allocation Throughput 7.3x ↑;Cost 1.49x ↓ G R 1 V100 ✓

Guardian[92] ▲ Resources Isolation Overhead Only 4-12% G R Quadro A4000;3080 Ti -

DOTPBA[84] ▲♦ Dynamic OTP Buffer Allocation Excution time 13.2-17.5% ↓ G S MGPUSim -

2023

iGniter[120] ✜✸ Profiling and Predicting Guarantee the SLOs by Cost 25% ↓ G R 10 V100 ✓

Libra[72] ✜✸ Dynamic Fine-grained Allocation Backward Time 6-20% ↓ G R & S 8 V100 ✓

IADeep[16] ♠✜ Co-Optimizing Task Assignments Utilization29-31%↑;JCT49%↓;Makespan67%↓ G R 20 RTX 3090 ✓

ctmGPU[68] ♠✜ Interleave PCIe Channel Accesses JCT 31.8-38.3% ↓ when GPU Memory 1.33-2x G R 8 P40 -

2022

Astraea[111] ♦♠♥ Primal-Dual Algorithm;Sharing Rewards Fairness 20% ↑ G S - -

VELTAIR[73] ♣✜ Dynamic Fine-grained Allocation Latency 50% ↓;Throughput 45-71% ↑ G R - ✓

GDC[10] ✜ Track the Contention Help Desiger Know How APPs are affected G S GPGPU-Sim -

MoCA[57] ★♥✜ Dynamic Fine-grained Allocation SLA 1.8x ↑;Throughput 1.7x ↑;Fairness 1.2x ↑ G S FireSim -

2021
MAPA[96] ♦✜ Dynamic Fine-grained Allocation 75% JCT 12.4% ↓;Worst Execution Time 35% ↓ G R & S 1 V100 ✓

ParSecureML[137] ▲ Parallel Processing Makespan 33.8x ↓ G R 3 V100 ✓

2020
Themis[77] ♥ Finish-Time Fairness Fairness 2.25x ↑ G R 64 K80 GPU -

Fingerprint[108] ▲ Extracting FPGA Fingerprint Identify Cloud FPGA Instances F R f1.2xlarge;f1.4xlarge ✓

Gandiva_fair[11] ▲ Job Migration and Trading Fair-share in a Heterogeneous Setting G R V100;P100;K80 -

2019
IAVS[121] ✜ Profiling and Predicting Accuracy 15-40% ↑ G R 1 Nvidia P100 -

GAugur[65] ♠✜ Profiling and Predicting GPU Utilization 20-60% ↑ G R 1 RTX 1060 -

gQoS[74] ✜ Adaptive Virtualized Under the QoS Target GPU Utilization 25.85% ↓ under QoS G R Intel HD Graphics 5500 -

2018

VMCG[107] ♠♥ Separate V-Channel GPU Allocation Fairness 60-80% ↑ G R 1 GTX 750Ti -

FREFI[101] ▲ Wide Parametrizable Secret Sharing Core Throughput 6.4Gbit/s F R - -

Leaky Wires[35] ▲ Leaky Wires Covert Communication Bandwidth 6kbps F R Virtex -

Graviton[110] ▲ Static Analysis Validation Latency 17-33% ↓ G R GTX 780; GTX Titan -

2017 Prophet[13] ♠✜ Profiling and Predicting Utilization 49.9%↑by Prediction Error 5.47% G R Nvidia K40 -

2016 Mystic[109] ✜ Profiling and Predicting Throughput 27.5% ↑;GPU utilization 16.3% ↑ G R 34 Nvidia K40m -

Obj.(Objectives): ★(Throughput) ♠(Utilization) ♣(Latency) ♦(Job Completion Time) ✸(Cost) ♥(Fairness) ✜(Interference)
▲(Security) Dev.(Device Type): G(GPU) N(NPU) F(FPGA) Exp.T(Experiment Type): R(Real Cluster) S(Simulation)
Exp.S(Experiment Scales): the scale of physical cluster. -:not clearly specified

memory bandwidth interference on performance, methodically examines approaches to ensure equitable resource
allocation, and underscores the significance of robust security measures. A synopsis of advancements in the pertinent
literature is enumerated in Table 6.

4.1 Fairness

The concept of fairness in computational resource allocation refers to the equitable distribution of resources among tasks
and users, preventing monopolization. It involves balancing task priorities in multi-tenancy environments, ensuring a
trade-off between latency and throughput, and dynamically adapting to changing workloads and resource availability.

Themis [77] design allocates GPUs to winning bids by trading off fairness for efficiency in the short term, but
ensuring finish-time fairness in the long term, rather than prioritizing one over the other. Astraea [111] employs
incentives to encourage fair resource sharing among tenants. By offering rewards or benefits for efficient resource
sharing, it encourages tenants to cooperate and share GPU resources. VMCG’s [107] approach is to ensure fairness by
allocating dedicated GPU channels to virtual machines. Each VM is allocated its own channel, preventing interference
and ensuring that resources are distributed fairly. Gandiva_fair [11] is a scheduling framework for heterogeneous GPU
clusters that balances efficiency and fairness. It employs dynamic profiling, job migration, and GPU trading mechanisms
to optimize resource allocation across multiple GPU models, improving cluster utilization and performance while
ensuring fair resource distribution among users.

Manuscript submitted to ACM



1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

24 Huang et al.

4.2 Interference

In the context of accelerator sharing, interference refers to the negative impact on task performance due to competition
for shared resources like memory bandwidth, compute units, and cache. This can lead to increased latency, reduced
throughput, and unpredictable task execution. Addressing interference involves strategies such as resource isolation,
fair scheduling, dynamic resource management, and performance isolation to ensure efficient and predictable task
performance.

4.2.1 Computing. In a GPU, compute units include Streaming Multiprocessors (SMs) with CUDA cores, Tensor Cores,
Ray Tracing Cores (RT Cores), Texture Units, Shader Units, Raster Operations Pipelines (ROPs), Special Function
Units (SFUs), and Load/Store Units (LD/ST Units), all working together for efficient parallel computation and graphics
rendering. Most interference in GPUs typically occurs in the Streaming Multiprocessors (SMs), which house the CUDA
cores. This is where the bulk of parallel computation happens, leading to contention for compute resources.

We can categorize existing approaches in two groups. Firstly, several works focus on predicting and mitigating
interference through real-time monitoring and forecasting, ensuring efficient and predictable resource allocation.
Prophet [13] focuses on predicting Quality of Service (QoS) metrics to improve resource utilization and ensure perfor-
mance compliance in non-preemptive accelerator environments. IAVS [121] aims to predict and manage performance
interference for interference-aware scheduling in virtualized GPU environments. GAugur [65] quantifies performance
interference among colocated gaming workloads to optimize resource utilization in cloud gaming scenarios. Each
approach targets different environments and types of interference, using tailored prediction technologies to enhance
performance and resource management. IGniter [120] ensures predictable DNN inference performance in the cloud
by employing interference-aware GPU resource provisioning, dynamically allocating resources based on predicted
interference levels. IADeep [16] employs a middleware approach that intelligently multiplexes deep learning workloads,
using interference models to predict and mitigate contention. Mystic [109] employs a collaborative filtering framework
to predict the interference caused by incoming applications based on their similarity to currently running applications.
This prediction enables the scheduler to minimize interference and optimize system throughput.

Secondly, many works manage interference by focusing specifically on fine-grained GPU sharing and thread
allocation technologies. Orion [103] provides fine-grained GPU sharing with interference awareness, dynamically
adjusting GPU usage for ML applications by monitoring interference levels and reallocating resources. Libra [72]
introduces contention-aware GPU thread allocation for data parallel training, optimizing thread distribution in high-
speed network environments by assigning threads based on contention metrics. GQoS [74] provides a QoS-oriented
GPU virtualization framework with adaptive capacity sharing, which allows for the dynamic adjustment of resource
allocation according to real-time workload demands to maintain QoS for multiple tenants. MAPA [96] introduces a
multi-accelerator pattern allocation policy that optimizes GPU resource sharing and reduces contention in multi-tenant
GPU servers by identifying and leveraging workload patterns. VELTAIR [73] enhances multi-tenant deep learning
services through adaptive compilation and scheduling, optimizing performance by dynamically adjusting compilation
strategies and scheduling decisions based on current system states.

4.2.2 Memory and Bandwidth. Memory interference occurs when multiple tasks compete for memory resources,
resulting in increased latency, reduced throughput, and unpredictable performance. Mitigation strategies may include
resource partitioning, priority scheduling, dynamic resource management, performance isolation, and effective caching,
with the objective of ensuring efficient and consistent task execution.
Manuscript submitted to ACM



1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

On Efficiency, Fairness and Security in AI Accelerator Resource Sharing: A Survey 25

GDC [10] is concerned with the real-time tracking and management of cache contention, allowing for more efficient
use of last-level cache resources by identifying and mitigating cache-related performance issues. MoCA [57] introduces
memory-centric, adaptive execution strategies that dynamically adjust memory allocation based on the specific demands
of multi-tenant DNN workloads. G10 [138] integrates GPU memory and storage with smart tensor migrations, creating
a unified architecture that enables efficient data movement and reduces memory access contention. CtmGPU [68]
develops advanced scheduling technologies for tensor movements across multiple GPUs, optimizing the timing and
coordination of data transfers to prevent bottlenecks.

4.3 Security

Security in resource sharing involves protecting sensitive data through encryption and access control, ensuring resource
isolation to prevent interference between tasks, implementing fair scheduling to avoid resource contention, maintaining
network security with protocols and intrusion detection, and preventing side-channel attacks. It ensures that multiple
tasks or tenants can share GPU resources efficiently without compromising data privacy, task performance, or system
integrity.

Guardian [92] is designed to maintain isolation and enforce security policies in multi-tenant GPU environments.
To address the bandwidth issue of additional security metadata, DOTPBA [84] uses a dynamic batching scheme to
transfer only a single set of metadata for each batched group of data responses. The proposed design constantly tracks
the communication pattern of each GPU, periodically adjusts the allocated buffer size, and dynamically forms batches
of data transfers. ParSecureML [137] employs methods such as data parallelism, where large datasets are divided and
processed concurrently across multiple GPU cores, and model parallelism, which splits the machine learning model
itself for parallel execution. Additionally, it incorporates cryptographic protocols like homomorphic encryption and
secure multiparty computation to ensure data privacy and security during processing. Graviton [110] addresses the
need for secure execution on heterogeneous systems, introducing a co-designed hardware-software framework that
ensures kernel isolation and encryption efficiency with minimal performance impact. These combined methods optimize
computational performance while maintaining robust data protection.

In addition to the GPU-related work mentioned above, some research has focused on edge accelerators, such as FPGAs,
to address security challenges. Leaky Wires [35] explores vulnerabilities in FPGA routing resources, revealing how
crosstalk effects in longwires can be exploited for covert communication and proposingmitigation strategies to secure the
routing infrastructure. FREFI [101] designs an optimized FPGA architecture for secure data storage, achieving significant
improvements in throughput and resource efficiency compared to traditional methods. Furthermore, Fingerprint [108]
investigates security risks in cloud FPGA deployments by using Physical Unclonable Functions (PUFs) to identify
unique FPGA instances, highlighting potential threats and suggesting countermeasures to mitigate them. These studies
highlight the unique challenges and solutions for ensuring the security of edge accelerators in distributed computing
environments.

4.4 Discussion

In conclusion, this section analyzes three critical aspects of AI accelerator sharing optimization: fairness, interference,
and security, with various approaches achieving different levels of improvement. Fairness optimization approaches
like Themis achieve up to 2.25x improvement, while interference mitigation solutions such as VELTAIR and IADEEP
demonstrate significant gains of 1.71x and 1.67x respectively. Security-focused solutions like ParSecureML and Guardian
show moderate but stable improvements of 1.33x and 1.12x.

Manuscript submitted to ACM



1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

26 Huang et al.

The optimization techniques can be categorized by their primary objectives: fairness-oriented solutions (Themis,
VMCG, Astraea) focus on equitable resource allocation with improvements ranging from 1.2x to 2.25x; interference-
focused approaches (IAVS, Prophet, Mystic) address resource contention with enhancements from 1.25x to 1.6x; and
security-centered solutions (ParSecureML, Guardian, DOTPBA) prioritize protected execution with improvements from
1.12x to 1.33x.

Balancing Competition and Security is a Challenge in AI Accelerator Resource Sharing. Balancing competition
and security in AI accelerator resource sharing is a complex challenge that requires careful consideration of trade-offs.
Competition-oriented methods prioritize efficient resource utilization among tasks or users, often leading to higher
improvement ratios and enhanced system performance. However, these approaches may not adequately address potential
security vulnerabilities. On the other hand, security-focused solutions prioritize protecting the system from threats, such
as unauthorized access or data breaches, but the additional overhead of implementing these protective mechanisms often
results in more modest performance gains. This inherent trade-off highlights the difficulty of designing systems that
can effectively meet diverse optimization goals, requiring innovative strategies to strike a balance between competitive
resource allocation and robust system security.

Fairness should be achieved through isolation. The concept of scheduling fairness can be interpreted from two
distinct perspectives [27]. From the scheduler’s perspective, fairness implies an even allocation of resources to each
task, thereby maximizing the overall utilization of resources. Conversely, from the users’ perspective, fairness entails
that the resources requested by the users will be honored, even if they are unable to fully utilize the majority of the
requested resources within a given time slot. This results in a situation where the scheduler must observe some tasks
experiencing difficulties in executing their instructions while simultaneously expending resources on idle tasks to
ensure the desired level of fairness to the users.

These two perspectives, which are contradictory, must be reconciled through competitive isolation. When some tasks
have more free resources, the scheduler allocates these resources to other tasks that require them more urgently or have
been waiting for an extended period, thus achieving the scheduler’s fairness. Consequently, when the load of these free
tasks suddenly increases, the scheduler must employ robust resource isolation to reclaim the resources and maintain
user-level fairness. The crux of this coordination lies in the efficacy of the resource isolation policy. It is our contention
that future research on these two factors—competitive isolation and resource allocation—will prove mutually beneficial.
By enhancing the mechanisms for dynamic resource allocation and isolation, it is possible to achieve a balance that
satisfies both the scheduler’s and users’ perspectives of fairness, thereby optimizing overall system performance and
user satisfaction.

Memory security will be the important issue for LLMs. Efficient memory usage is critical for LLMs due to their
size and computational demands. Memory sharing techniques significantly enhance throughput and scalability by
reducing redundancy and improving hardware utilization. Examples include weight sharing, activation reuse, and
memory pooling, which collectively lower costs and increase efficiency.

However, shared memory poses privacy risks, such as data leakage, timing side-channel attacks, and residual data
exposure. Ensuring user isolation in memory sharing involves techniques like memory partitioning, encryption, data
sanitization, and access controls.

Manuscript submitted to ACM



1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

On Efficiency, Fairness and Security in AI Accelerator Resource Sharing: A Survey 27

Balancing memory efficiency and privacy is key to optimizing LLMs. Future efforts should focus on dynamic memory
management, hardware support for secure memory, and minimizing cross-user interference to achieve scalable and
secure LLM deployments.

Normal LLM inference request will be disrupted by a long-text request. With the rapid advancement of LLMs,
long-text inference requests have become increasingly common. These requests demand higher computational and
memory resources and take longer to complete. The growing volume of long-text requests inevitably leads to resource
contention with regular requests that have strict latency requirements. This issue has drawn significant attention from
researchers [94], who are now employing efficient scheduling techniques to manage long-text requests and enhance
overall cluster efficiency.

5 OPEN CHALLENGES

This section will present a discussion of existing challenges that have not been considered in the papers included in this
survey, as well as potential future directions for research in this area.

5.1 SLA-aware Resource Sharing and Job Packing

The optimization of efficiency represents a fundamental objective in the context of sharing technologies. Most sharing
algorithms are designed to optimize various aspects of efficiency. The initial step is to define efficiency. Traditionally,
these algorithms use system metrics, such as utilization, to assess efficiency. However, we believe this approach is
insufficient for measuring the efficiency of an application. A more appropriate method would be to employ user-level
metrics, such as latency, to assess the effectiveness of the application from the user’s perspective. Due to privacy and
security concerns, the system scheduler is unable to obtain user-level metrics. This makes mapping an application’s
SLA (Service Level Agreement) or user metrics using system metrics a significant challenge. UFO [93] addresses this by
employing a scheduling frequency-based approach to map application latency. This involves adjusting CPU allocation
based on predicted scheduling frequency. In the future, selecting an appropriate model with a limited set of system
metrics to gauge an application’s SLA on a GPU will likely gain considerable attention.

To address these challenges, future research should focus on leveraging machine learning models to bridge the gap
between system-level metrics and user-level performance indicators. By training lightweight models on system data
such as GPU utilization, memory bandwidth, and scheduling frequency, it is possible to predict user-level metrics like
latency or SLA compliance.

5.2 Resource Sharing over Heterogeneous Accelerators

Modern data centers and edge AI systems deploy a diverse range of AI accelerators with varying computational
capabilities. These accelerators can range from highly advanced to relatively limited, with some featuring opaque
internal mechanisms and others operating transparently. Resource allocation also differs widely, from fine-grained
control to coarse-grained levels constrained by virtualization techniques.

This heterogeneity necessitates a unified sharing framework to optimize resource use across both data center and
edge accelerators. Such a framework should integrate sharing technologies tailored to the unique attributes of each
device, enabling efficient utilization and boosting overall system performance.

Manuscript submitted to ACM



1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

28 Huang et al.

5.3 Coordination of Global Scheduler and Local Schedulers

AI accelerator sharing frequently relies on frequent profiling and prediction methodologies. However, the global
scheduler’s tasks, which include calculating remaining resources, synchronizing information, and selecting suitable
nodes, can introduce significant overhead, particularly under substantial workloads. It is important to note that certain
processes involved in node selection are characterized by high-complexity optimization. The present study posits that
the offloading of certain computations to the local scheduler, including the determination of resource sharing feasibility
and the calculation of the remaining resource capacity after sharing, can alleviate the global scheduler’s burden. This
delegation enables the global scheduler to prioritize its core functions, thereby enhancing the efficiency of the overall
scheduling process.

To address the challenges outlined, a practical approach would be to implement a hierarchical scheduling system
where the local scheduler handles computationally intensive tasks such as resource sharing feasibility and residual
capacity calculations. This design reduces the global scheduler’s workload, allowing it to focus on high-level decision-
making and system-wide synchronization. Additionally, leveraging lightweight machine learning models at the local
level can further optimize resource allocation and enhance scheduling efficiency.

5.4 Resource Contention and User Experience in LLMWorkloads

The proliferation of LLMs has led to a surge in the availability of bot chat services for the general public. The response
latency is a key factor in the service experience. While sharing technology can improve the overall system’s resource
use efficiency, it can also, to some extent, affect the user’s experience.

To address this issue, techniques such as fast competition, localization, and resource isolation become exceptionally
important. If the monitoring program identifies an impact on the user experience, it is essential for the program to
respond promptly to prevent the resource quota of the reasoning service from being exceeded or to make predictions
about these scenarios in advance. These factors underscore the significance of detecting resource competition.

5.5 Accelerator Sharing Expands from Device-Level to Cluster-Level

As AI models, particularly large language models (LLMs), grow in size and complexity, individual devices increasingly
fall short of meeting the computational and memory demands of these tasks. This limitation has driven a shift toward
cluster-level sharing, which introduces new challenges. Managing data synchronization across distributed accelerators
becomes significantly more complex, especially for tasks requiring precise coordination in parallel processing. Network
bottlenecks emerge as data transfers between nodes scale, diminishing the efficiency of both training and inference.
Furthermore, maintaining workload fairness and minimizing interference across heterogeneous cluster hardware
necessitate sophisticated scheduling algorithms. Resource fragmentationwithin clusters adds another layer of complexity,
as underutilized accelerators often coexist with overloaded ones, further complicating resource optimization.

These challenges necessitate the development of robust cluster-level resource management systems that can dynami-
cally allocate, optimize, and monitor resources to maximize performance and scalability.

6 CONCLUSIONS

This survey systematically investigates the latest resource-sharing technologies for AI accelerators. We first present
a statistic view of current research from multiple perspectives. Then we introduce the key concepts and analyze the
performance measures that are greatly impacted by AI accelerator sharing. This also includes an exploration of the
Manuscript submitted to ACM



1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

On Efficiency, Fairness and Security in AI Accelerator Resource Sharing: A Survey 29

common principles and fundamental techniques adopted in the literature. In particular, We categorize existing studies
by their aim of system optimization with primary focus on efficiency, including time efficiency, cost efficiency, and
system throughput efficiency. Additionally, we examine issues related to fairness, task interference, and the security
implications associated with resource sharing.

Furthermore, we highlight critical open challenges that have not been addressed in existing effort. These challenges
encompass the need for better resource allocation strategies in shared environments. This survey provides a compre-
hensive overview of the state-of-the-art, guiding future research directions and emphasizing the necessity for further
advancements in resource-sharing technologies.

ACKNOWLEDGMENTS

This work is supported by Guangdong Major Project of Basic and Applied Basic Research (2019B030302002), National
Natural Science Foundation of China (62402198), Guangxi Key Research and Development Project(2024AB02018),
Guangzhou Development Zone Science and Technology Project (2023GH02), Fundamental Research Funds for the
Central Universities (21624348), and in part by the Major Key Project of PCL (PCL2023A09).

REFERENCES
[1] 2024. Apple’s Neural Engine. https://www.apple.com/newsroom/2024/05/apple-introduces-m4-chip/.
[2] 2024. Google Edge TPU. https://cloud.google.com/edge-tpu?hl=zh-cn.
[3] 2024. Huawei’s Ascend. https://e.huawei.com/en/products/computing/ascend.
[4] 2024. NVIDIA Management Library. https://developer.nvidia.com/management-library-nvml.
[5] 2024. NVIDIA multi-instance GPU. https://www.nvidia.com/en-us/technologies/multi-instance-gpu/.
[6] 2024. NVIDIA Multi-process service. https://docs.nvidia.com/deploy/mps/.
[7] Karel Adámek, Sofia Dimoudi, Mike Giles, and Wesley Armour. 2020. GPU Fast Convolution via the Overlap-and-Save Method in Shared Memory.

ACM Trans. Archit. Code Optim. 17, 3, Article 18 (aug 2020), 20 pages.
[8] Hyunho Ahn, Munkyu Lee, Sihoon Seong, Gap-Joo Na, In-Geol Chun, Blesson Varghese, and Cheol-Ho Hong. 2024. ScissionLite: Accelerating

Distributed Deep Learning With Lightweight Data Compression for IIoT. IEEE Transactions on Industrial Informatics (2024).
[9] Rachata Ausavarungnirun, Vance Miller, Joshua Landgraf, Saugata Ghose, Jayneel Gandhi, Adwait Jog, Christopher J. Rossbach, and Onur Mutlu.

2018. MASK: Redesigning the GPU Memory Hierarchy to Support Multi-Application Concurrency. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and Operating Systems (Williamsburg, VA, USA) (ASPLOS ’18). Association for
Computing Machinery, New York, NY, USA, 503–518.

[10] Javier Barrera, Leonidas Kosmidis, Hamid Tabani, Jaume Abella, and Francisco J. Cazorla. 2022. Contention Tracking in GPU Last-Level Cache. In
2022 IEEE 40th International Conference on Computer Design (ICCD). 76–79.

[11] Shubham Chaudhary, Ramachandran Ramjee, Muthian Sivathanu, Nipun Kwatra, and Srinidhi Viswanatha. 2020. Balancing efficiency and fairness
in heterogeneous GPU clusters for deep learning. In Proceedings of the Fifteenth European Conference on Computer Systems (Heraklion, Greece)
(EuroSys ’20). Association for Computing Machinery, New York, NY, USA, Article 1, 16 pages. https://doi.org/10.1145/3342195.3387555

[12] Hung-Hsin Chen, En-Te Lin, Yu-Min Chou, and Jerry Chou. 2023. Gemini: Enabling Multi-Tenant GPU Sharing Based on Kernel Burst Estimation.
IEEE Transactions on Cloud Computing 11, 1 (2023), 854–867.

[13] Quan Chen, Hailong Yang, Minyi Guo, Ram Srivatsa Kannan, Jason Mars, and Lingjia Tang. 2017. Prophet: Precise QoS Prediction on Non-
Preemptive Accelerators to Improve Utilization in Warehouse-Scale Computers. SIGARCH Comput. Archit. News 45, 1 (apr 2017), 17–32.

[14] Quan Chen, Hailong Yang, Jason Mars, and Lingjia Tang. 2016. Baymax: QoS Awareness and Increased Utilization for Non-Preemptive Accelerators
in Warehouse Scale Computers. In Proceedings of the Twenty-First International Conference on Architectural Support for Programming Languages and
Operating Systems (Atlanta, Georgia, USA) (ASPLOS ’16). Association for Computing Machinery, New York, NY, USA, 681–696.

[15] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen, and Olivier Temam. 2014. Diannao: A small-footprint high-
throughput accelerator for ubiquitous machine-learning. ACM SIGARCH Computer Architecture News 42, 1 (2014), 269–284.

[16] Wenyan Chen, Zizhao Mo, Huanle Xu, Kejiang Ye, and Chengzhong Xu. 2023. Interference-aware Multiplexing for Deep Learning in GPU Clusters:
A Middleware Approach. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC ’23).
Association for Computing Machinery, New York, NY, USA, Article 30, 15 pages.

[17] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li, Tianshi Chen, Zhiwei Xu, Ninghui Sun, et al. 2014. Dadiannao: A
machine-learning supercomputer. In 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture. IEEE, 609–622.

Manuscript submitted to ACM

https://www.apple.com/newsroom/2024/05/apple-introduces-m4-chip/
https://cloud.google.com/edge-tpu?hl=zh-cn
https://e.huawei.com/en/products/computing/ascend
https://developer.nvidia.com/management-library-nvml
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://docs.nvidia.com/deploy/mps/
https://doi.org/10.1145/3342195.3387555


1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

30 Huang et al.

[18] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: a spatial architecture for energy-efficient dataflow for convolutional neural networks.
In Proceedings of the 43rd International Symposium on Computer Architecture (Seoul, Republic of Korea) (ISCA ’16). IEEE Press, 367–379. https:
//doi.org/10.1109/ISCA.2016.40

[19] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. 2019. Eyeriss v2: A flexible accelerator for emerging deep neural networks on mobile
devices. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 9, 2 (2019), 292–308.

[20] Zhenqian Chen, Xinkui Zhao, Chen Zhi, and Jianwei Yin. 2023. DeepBoot: Dynamic Scheduling System for Training and Inference Deep Learning
Tasks in GPU Cluster. IEEE Transactions on Parallel and Distributed Systems 34, 9 (2023), 2553–2567.

[21] Jinwoo Choi, Yeonan Ha, Jounghoo Lee, Sangsu Lee, Jinho Lee, Hanhwi Jang, and Youngsok Kim. 2023. Enabling Fine-Grained Spatial Multitasking
on Systolic-Array NPUs Using Dataflow Mirroring. IEEE Trans. Comput. 72, 12 (2023), 3383–3398.

[22] Seungbeom Choi, Sunho Lee, Yeonjae Kim, Jongse Park, Youngjin Kwon, and Jaehyuk Huh. 2022. Serving Heterogeneous Machine Learning
Models on Multi-GPU Servers with Spatio-Temporal Sharing. In 2022 USENIX Annual Technical Conference (USENIX ATC 22). USENIX Association,
Carlsbad, CA, 199–216.

[23] Yujeong Choi and Minsoo Rhu. 2020. PREMA: A Predictive Multi-Task Scheduling Algorithm For Preemptible Neural Processing Units. In 2020
IEEE International Symposium on High Performance Computer Architecture (HPCA). 220–233.

[24] Marcus Chow, Ali Jahanshahi, and Daniel Wong. 2023. KRISP: Enabling Kernel-wise RIght-sizing for Spatial Partitioned GPU Inference Servers. In
2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA). 624–637.

[25] Chunhua Deng, Siyu Liao, and Bo Yuan. 2021. PermCNN: Energy-Efficient Convolutional Neural Network Hardware Architecture With Permuted
Diagonal Structure. IEEE Trans. Comput. 70, 2 (2021), 163–173.

[26] Aditya Dhakal, Sameer G Kulkarni, and K. K. Ramakrishnan. 2020. GSLICE: controlled spatial sharing of GPUs for a scalable inference platform. In
Proceedings of the 11th ACM Symposium on Cloud Computing (Virtual Event, USA) (SoCC ’20). Association for Computing Machinery, New York,
NY, USA, 492–506.

[27] Kate Donahue and Jon Kleinberg. 2020. Fairness and utilization in allocating resources with uncertain demand. In Proceedings of the 2020 Conference
on Fairness, Accountability, and Transparency (Barcelona, Spain) (FAT* ’20). Association for Computing Machinery, New York, NY, USA, 658–668.

[28] Yajuan Du, Mingyang Liu, Yuqi Yang, Mingzhe Zhang, and Xulong Tang. 2022. Enhancing GPU Performance via Neighboring Directory Table
Based Inter-TLB Sharing. In 2022 IEEE 40th International Conference on Computer Design (ICCD). 146–153.

[29] Jiangfei Duan, Ziang Song, Xupeng Miao, Xiaoli Xi, Dahua Lin, Harry Xu, Minjia Zhang, and Zhihao Jia. 2024. Parcae: Proactive, Liveput-Optimized
DNN Training on Preemptible Instances. In 21st USENIX Symposium on Networked Systems Design and Implementation (NSDI 24). USENIX
Association, Santa Clara, CA, 1121–1139.

[30] Amir Erfan Eshratifar and Massoud Pedram. 2020. Runtime Deep Model Multiplexing for Reduced Latency and Energy Consumption Inference. In
2020 IEEE 38th International Conference on Computer Design (ICCD). 263–270.

[31] Hongxiang Fan, Stylianos I. Venieris, Alexandros Kouris, and Nicholas Lane. 2023. Sparse-DySta: Sparsity-Aware Dynamic and Static Scheduling
for Sparse Multi-DNNWorkloads. In Proceedings of the 56th Annual IEEE/ACM International Symposium on Microarchitecture (Toronto, ON, Canada)
(MICRO ’23). Association for Computing Machinery, New York, NY, USA, 353–366.

[32] Henrique Fingler, Zhiting Zhu, Esther Yoon, Zhipeng Jia, Emmett Witchel, and Christopher J. Rossbach. 2022. DGSF: Disaggregated GPUs
for Serverless Functions. In 2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS). 739–750. https://doi.org/10.1109/
IPDPS53621.2022.00077

[33] Debashis Ganguly, Rami Melhem, and Jun Yang. 2021. An Adaptive Framework for Oversubscription Management in CPU-GPU Unified Memory.
In 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE). 1212–1217.

[34] Chengsi Gao, Ying Wang, Cheng Liu, Mengdi Wang, Weiwei Chen, Yinhe Han, and Lei Zhang. 2023. Layer-Puzzle: Allocating and Scheduling
Multi-task on Multi-core NPUs by Using Layer Heterogeneity. In 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE). 1–6.

[35] Ilias Giechaskiel, Kasper B. Rasmussen, and Ken Eguro. 2018. Leaky Wires: Information Leakage and Covert Communication Between FPGA
Long Wires. In Proceedings of the 2018 on Asia Conference on Computer and Communications Security (Incheon, Republic of Korea) (ASIACCS ’18).
Association for Computing Machinery, New York, NY, USA, 15–27. https://doi.org/10.1145/3196494.3196518

[36] Ashish Gondimalla, Noah Chesnut, Mithuna Thottethodi, and TN Vijaykumar. 2019. SparTen: A sparse tensor accelerator for convolutional neural
networks. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture. 151–165.

[37] Jianfeng Gu, Yichao Zhu, Puxuan Wang, Mohak Chadha, and Michael Gerndt. 2023. FaST-GShare: Enabling Efficient Spatio-Temporal GPU Sharing
in Serverless Computing for Deep Learning Inference. In Proceedings of the 52nd International Conference on Parallel Processing (Salt Lake City, UT,
USA) (ICPP ’23). Association for Computing Machinery, New York, NY, USA, 635–644.

[38] Mingcong Han, Hanze Zhang, Rong Chen, and Haibo Chen. 2022. Microsecond-scale Preemption for Concurrent GPU-accelerated DNN Inferences.
In 16th USENIX Symposium on Operating Systems Design and Implementation (OSDI 22). USENIX Association, Carlsbad, CA, 539–558.

[39] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and William J Dally. 2016. EIE: Efficient inference engine on
compressed deep neural network. ACM SIGARCH Computer Architecture News 44, 3 (2016), 243–254.

[40] Cheol-Ho Hong, Ivor Spence, and Dimitrios S. Nikolopoulos. 2017. GPU Virtualization and Scheduling Methods: A Comprehensive Survey. ACM
Comput. Surv. 50, 3, Article 35 (jun 2017), 37 pages.

[41] Liang Hu, Xilong Che, and Si-Qing Zheng. 2016. A Closer Look at GPGPU. ACM Comput. Surv. 48, 4, Article 60 (mar 2016), 20 pages.

Manuscript submitted to ACM

https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/IPDPS53621.2022.00077
https://doi.org/10.1109/IPDPS53621.2022.00077
https://doi.org/10.1145/3196494.3196518


1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

On Efficiency, Fairness and Security in AI Accelerator Resource Sharing: A Survey 31

[42] Qinghao Hu, Peng Sun, Shengen Yan, Yonggang Wen, and Tianwei Zhang. 2021. Characterization and prediction of deep learning workloads in
large-scale gpu datacenters. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. 1–15.

[43] Qinghao Hu, Meng Zhang, Peng Sun, Yonggang Wen, and Tianwei Zhang. 2023. Lucid: A Non-intrusive, Scalable and Interpretable Scheduler for
Deep Learning Training Jobs. In Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2 (Vancouver, BC, Canada) (ASPLOS 2023). Association for Computing Machinery, New York, NY, USA, 457–472.

[44] Weiming Huang, Yajuan Du, and Mingyang Liu. 2023. GPU Performance Acceleration via Intra-Group Sharing TLB. In Proceedings of the 52nd
International Conference on Parallel Processing (Salt Lake City, UT, USA) (ICPP ’23). Association for Computing Machinery, New York, NY, USA,
705–714.

[45] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al.
2019. Gpipe: Efficient training of giant neural networks using pipeline parallelism. Advances in neural information processing systems 32 (2019).

[46] Paras Jain, Xiangxi Mo, Ajay Jain, Harikaran Subbaraj, Rehan Sohail Durrani, Alexey Tumanov, Joseph Gonzalez, and Ion Stoica. 2018. Dynamic
space-time scheduling for gpu inference. arXiv preprint arXiv:1901.00041 (2018).

[47] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie Qian, Wencong Xiao, and Fan Yang. 2019. Analysis of {Large-Scale}{Multi-
Tenant}{GPU} clusters for {DNN} training workloads. In 2019 USENIX Annual Technical Conference (USENIX ATC 19). 947–960.

[48] Zhuoran Ji and Cho-Li Wang. 2021. Collaborative gpu preemption via spatial multitasking for efficient gpu sharing. In European Conference on
Parallel Processing. Springer, 89–104.

[49] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanxiong Guo. 2020. A Unified Architecture for Accelerating Distributed DNN
Training in Heterogeneous GPU/CPU Clusters. In 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20). USENIX
Association, 463–479.

[50] Ziheng Jiang, Haibin Lin, Yinmin Zhong, Qi Huang, Yangrui Chen, Zhi Zhang, Yanghua Peng, Xiang Li, Cong Xie, Shibiao Nong, Yulu Jia, Sun He,
Hongmin Chen, Zhihao Bai, Qi Hou, Shipeng Yan, Ding Zhou, Yiyao Sheng, Zhuo Jiang, Haohan Xu, Haoran Wei, Zhang Zhang, Pengfei Nie, Leqi
Zou, Sida Zhao, Liang Xiang, Zherui Liu, Zhe Li, Xiaoying Jia, Jianxi Ye, Xin Jin, and Xin Liu. 2024. MegaScale: Scaling Large Language Model
Training to More Than 10,000 GPUs. In 21st USENIX Symposium on Networked Systems Design and Implementation (NSDI 24). USENIX Association,
Santa Clara, CA, 745–760. https://www.usenix.org/conference/nsdi24/presentation/jiang-ziheng

[51] Norm Jouppi, George Kurian, Sheng Li, Peter Ma, Rahul Nagarajan, Lifeng Nai, Nishant Patil, Suvinay Subramanian, Andy Swing, Brian Towles,
Clifford Young, Xiang Zhou, Zongwei Zhou, and David A Patterson. 2023. TPU v4: An Optically Reconfigurable Supercomputer for Machine
Learning with Hardware Support for Embeddings. In Proceedings of the 50th Annual International Symposium on Computer Architecture (Orlando,
FL, USA) (ISCA ’23). Association for Computing Machinery, New York, NY, USA, Article 82, 14 pages.

[52] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al
Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir
Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian
Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon,
James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller,
Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross,
Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan,
Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. 2017.
In-Datacenter Performance Analysis of a Tensor Processing Unit. SIGARCH Comput. Archit. News 45, 2 (jun 2017), 1–12.

[53] Raju K and Niranjan N. Chiplunkar. 2018. A survey on techniques for cooperative CPU-GPU computing. Sustainable Computing: Informatics and
Systems 19 (2018), 72–85.

[54] Donghyun Kang and Soonhoi Ha. 2020. Tensor Virtualization Technique to Support Efficient Data Reorganization for CNN Accelerators. In 2020
57th ACM/IEEE Design Automation Conference (DAC). 1–6.

[55] Sheng-Chun Kao and Tushar Krishna. 2022. MAGMA: An Optimization Framework for Mapping Multiple DNNs on Multiple Accelerator Cores. In
2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA). 814–830.

[56] Jason Kennedy, Vishal Sharma, Blesson Varghese, and Carlos Reaño. 2023. Multi-Tier GPU Virtualization for Deep Learning in Cloud-Edge Systems.
IEEE Transactions on Parallel and Distributed Systems 34, 7 (2023), 2107–2123.

[57] Seah Kim, Hasan Genc, Vadim Vadimovich Nikiforov, Krste Asanović, Borivoje Nikolić, and Yakun Sophia Shao. 2023. MoCA: Memory-Centric,
Adaptive Execution for Multi-Tenant Deep Neural Networks. In 2023 IEEE International Symposium on High-Performance Computer Architecture
(HPCA). 828–841.

[58] Seah Kim, Jerry Zhao, Krste Asanovic, Borivoje Nikolic, and Yakun Sophia Shao. 2023. AuRORA: Virtualized Accelerator Orchestration for
Multi-Tenant Workloads. In Proceedings of the 56th Annual IEEE/ACM International Symposium on Microarchitecture (Toronto, ON, Canada) (MICRO
’23). Association for Computing Machinery, New York, NY, USA, 62–76.

[59] Young Geun Kim and Carole-Jean Wu. 2020. AutoScale: Energy Efficiency Optimization for Stochastic Edge Inference Using Reinforcement
Learning. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 1082–1096.

[60] Munkyu Lee, Sihoon Seong, Minki Kang, Jihyuk Lee, Gap-Joo Na, In-Geol Chun, Dimitrios Nikolopoulos, and Cheol-Ho Hong. 2024. ParvaGPU:
Efficient Spatial GPU Sharing for Large-Scale DNN Inference in Cloud Environments. In SC24: International Conference for High Performance
Computing, Networking, Storage and Analysis. 1–14. https://doi.org/10.1109/SC41406.2024.00048

Manuscript submitted to ACM

https://www.usenix.org/conference/nsdi24/presentation/jiang-ziheng
https://doi.org/10.1109/SC41406.2024.00048


1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

32 Huang et al.

[61] Matthew LeMay, Shijian Li, and Tian Guo. 2020. PERSEUS: Characterizing Performance and Cost of Multi-Tenant Serving for CNN Models. In 2020
IEEE International Conference on Cloud Engineering (IC2E). 66–72.

[62] Baolin Li, Tirthak Patel, Siddharth Samsi, Vijay Gadepally, and Devesh Tiwari. 2022. Miso: exploiting multi-instance gpu capability on multi-tenant
gpu clusters. In Proceedings of the 13th Symposium on Cloud Computing. 173–189.

[63] Chen Li, Rachata Ausavarungnirun, Christopher J. Rossbach, Youtao Zhang, Onur Mutlu, Yang Guo, and Jun Yang. 2019. A Framework for Memory
Oversubscription Management in Graphics Processing Units. In Proceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems (Providence, RI, USA) (ASPLOS ’19). Association for Computing Machinery, New York, NY,
USA, 49–63.

[64] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, et al.
2020. Pytorch distributed: Experiences on accelerating data parallel training. arXiv preprint arXiv:2006.15704 (2020).

[65] Yusen Li, Chuxu Shan, Ruobing Chen, Xueyan Tang, Wentong Cai, Shanjiang Tang, Xiaoguang Liu, Gang Wang, Xiaoli Gong, and Ying Zhang.
2019. GAugur: Quantifying Performance Interference of Colocated Games for Improving Resource Utilization in Cloud Gaming. In Proceedings
of the 28th International Symposium on High-Performance Parallel and Distributed Computing (Phoenix, AZ, USA) (HPDC ’19). Association for
Computing Machinery, New York, NY, USA, 231–242.

[66] Feng Liang, Zhen Zhang, Haifeng Lu, Chengming Li, Victor Leung, Yanyi Guo, and Xiping Hu. 2024. Resource Allocation and Workload Scheduling
for Large-Scale Distributed Deep Learning: A Survey. arXiv preprint arXiv:2406.08115 (2024).

[67] Gangmuk Lim, Jeongseob Ahn, Wencong Xiao, Youngjin Kwon, and Myeongjae Jeon. 2021. Zico: Efficient GPU Memory Sharing for Concurrent
DNN Training. In 2021 USENIX Annual Technical Conference (USENIX ATC 21). USENIX Association, 161–175.

[68] Shao-Fu Lin, Yi-Jung Chen, Hsiang-Yun Cheng, and Chia-Lin Yang. 2023. Tensor Movement Orchestration in Multi-GPU Training Systems. In 2023
IEEE International Symposium on High-Performance Computer Architecture (HPCA). 1140–1152.

[69] Liu Liu, Jian Yu, and Zhijun Ding. 2023. Adaptive and Efficient GPU Time Sharing for Hyperparameter Tuning in Cloud. In Proceedings of the 51st
International Conference on Parallel Processing (Bordeaux, France) (ICPP ’22). Association for Computing Machinery, New York, NY, USA, Article 5,
11 pages.

[70] Shaoli Liu, Zidong Du, Jinhua Tao, Dong Han, Tao Luo, Yuan Xie, Yunji Chen, and Tianshi Chen. 2016. Cambricon: An instruction set architecture
for neural networks. ACM SIGARCH Computer Architecture News 44, 3 (2016), 393–405.

[71] Yan Liu, Yansha Deng, Arumugam Nallanathan, and Jinhong Yuan. 2023. Machine Learning for 6G Enhanced Ultra-Reliable and Low-Latency
Services. IEEE Wireless Communications 30, 2 (2023), 48–54.

[72] Yunzhuo Liu, Bo Jiang, Shizhen Zhao, Tao Lin, Xinbing Wang, and Chenghu Zhou. 2023. Libra: Contention-Aware GPU Thread Allocation for
Data Parallel Training in High Speed Networks. In IEEE INFOCOM 2023 - IEEE Conference on Computer Communications. 1–10.

[73] Zihan Liu, Jingwen Leng, Zhihui Zhang, Quan Chen, Chao Li, and Minyi Guo. 2022. VELTAIR: towards high-performance multi-tenant deep
learning services via adaptive compilation and scheduling. In Proceedings of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS ’22). Association for Computing Machinery, New York, NY, USA,
388–401.

[74] Qiumin Lu, Jianguo Yao, Haibing Guan, and Ping Gao. 2020. gQoS: A QoS-Oriented GPU Virtualization with Adaptive Capacity Sharing. IEEE
Transactions on Parallel and Distributed Systems 31, 4 (2020), 843–855.

[75] Diaohan Luo, Tian Yu, Yuewen Wu, Heng Wu, Tao Wang, and Wenbo Zhang. 2023. SPLIT: QoS-Aware DNN Inference on Shared GPU via
Evenly-Sized Model Splitting. In Proceedings of the 52nd International Conference on Parallel Processing (Salt Lake City, UT, USA) (ICPP ’23).
Association for Computing Machinery, New York, NY, USA, 605–614.

[76] Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Xiaohe Cheng, Yanqiang Liu, Abel Mulugeta Eneyew, Zhengwei Qi, and Baris Kasikci. 2020. A Hypervisor
for Shared-Memory FPGA Platforms. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20). Association for Computing Machinery, New York, NY, USA, 827–844.
https://doi.org/10.1145/3373376.3378482

[77] Kshiteej Mahajan, Arjun Balasubramanian, Arjun Singhvi, Shivaram Venkataraman, Aditya Akella, Amar Phanishayee, and Shuchi Chawla. 2020.
Themis: Fair and Efficient GPU Cluster Scheduling. In 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI 20).
USENIX Association, Santa Clara, CA, 289–304.

[78] Mohammad-Ali Maleki, Alireza Nabipour-Meybodi, Mehdi Kamal, Ali Afzali-Kusha, and Massoud Pedram. 2021. An energy-efficient inference
method in convolutional neural networks based on dynamic adjustment of the pruning level. ACM Transactions on Design Automation of Electronic
Systems (TODAES) 26, 6 (2021), 1–20.

[79] Ruben Mayer and Hans-Arno Jacobsen. 2020. Scalable Deep Learning on Distributed Infrastructures: Challenges, Techniques, and Tools. ACM
Comput. Surv. 53, 1, Article 3 (feb 2020), 37 pages.

[80] Xupeng Miao, Yujie Wang, Youhe Jiang, Chunan Shi, Xiaonan Nie, Hailin Zhang, and Bin Cui. 2022. Galvatron: Efficient transformer training over
multiple gpus using automatic parallelism. arXiv preprint arXiv:2211.13878 (2022).

[81] Panagiotis Miliadis, Dimitris Theodoropoulos, Dionisios Pnevmatikatos, and Nectarios Koziris. 2024. Architectural Support for Sharing, Isolating
and Virtualizing FPGA Resources. ACM Trans. Archit. Code Optim. 21, 2, Article 33 (May 2024), 26 pages. https://doi.org/10.1145/3648475

[82] Hyemi Min, Jungyoon Kwon, and Bernhard Egger. 2023. Flexer: Out-of-Order Scheduling for Multi-NPUs. In Proceedings of the 21st ACM/IEEE
International Symposium on Code Generation and Optimization (CGO 2023). Association for Computing Machinery, New York, NY, USA, 212–223.

Manuscript submitted to ACM

https://doi.org/10.1145/3373376.3378482
https://doi.org/10.1145/3648475


1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

On Efficiency, Fairness and Security in AI Accelerator Resource Sharing: A Survey 33

[83] Jayashree Mohan, Amar Phanishayee, Janardhan Kulkarni, and Vijay Chidambaram. 2022. Looking Beyond GPUs for DNN Scheduling on
Multi-Tenant Clusters. In 16th USENIX Symposium on Operating Systems Design and Implementation (OSDI 22). USENIX Association, Carlsbad, CA,
579–596.

[84] Seonjin Na, Jungwoo Kim, Sunho Lee, and Jaehyuk Huh. 2024. Supporting Secure Multi-GPU Computing with Dynamic and Batched Metadata
Management. In 2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA). 204–217.

[85] Supun Nakandala, Yuhao Zhang, and Arun Kumar. 2020. Cerebro: A data system for optimized deep learning model selection. Proceedings of the
VLDB Endowment 13, 12 (2020), 2159–2173.

[86] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi
Kashinkunti, Julie Bernauer, Bryan Catanzaro, et al. 2021. Efficient large-scale language model training on gpu clusters using megatron-lm. In
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. 1–15.

[87] Thomas Norrie, Nishant Patil, Doe Hyun Yoon, George Kurian, Sheng Li, James Laudon, Cliff Young, Norman Jouppi, and David Patterson. 2021.
The Design Process for Google’s Training Chips: TPUv2 and TPUv3. IEEE Micro 41, 2 (2021), 56–63.

[88] Young H. Oh, Seonghak Kim, Yunho Jin, Sam Son, Jonghyun Bae, Jongsung Lee, Yeonhong Park, Dong Uk Kim, Tae Jun Ham, and Jae W. Lee. 2021.
Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Scheduling. In 2021 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). 584–597.

[89] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rangharajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W. Keckler,
and William J. Dally. 2017. SCNN: An Accelerator for Compressed-sparse Convolutional Neural Networks. In Proceedings of the 44th Annual
International Symposium on Computer Architecture (Toronto, ON, Canada) (ISCA ’17). Association for Computing Machinery, New York, NY, USA,
27–40. https://doi.org/10.1145/3079856.3080254

[90] Jason Jong Kyu Park, Yongjun Park, and Scott Mahlke. 2017. Dynamic Resource Management for Efficient Utilization of Multitasking GPUs.
SIGPLAN Not. 52, 4 (apr 2017), 527–540.

[91] Manos Pavlidakis, Stelios Mavridis, Antony Chazapis, Giorgos Vasiliadis, and Angelos Bilas. 2022. Arax: a runtime framework for decoupling
applications from heterogeneous accelerators. In Proceedings of the 13th Symposium on Cloud Computing (San Francisco, California) (SoCC ’22).
Association for Computing Machinery, New York, NY, USA, 1–15. https://doi.org/10.1145/3542929.3563467

[92] Manos Pavlidakis, Giorgos Vasiliadis, Stelios Mavridis, Anargyros Argyros, Antony Chazapis, and Angelos Bilas. 2024. Guardian: Safe GPU
Sharing in Multi-Tenant Environments. In Proceedings of the 25th International Middleware Conference (Hong Kong, Hong Kong) (MIDDLEWARE
’24). Association for Computing Machinery, New York, NY, USA, 313–326. https://doi.org/10.1145/3652892.3700768

[93] Yajuan Peng, Shuang Chen, Yi Zhao, and Zhibin Yu. 2024. UFO: The Ultimate QoS-Aware Core Management for Virtualized and Oversubscribed
Public Clouds. In 21st USENIX Symposium on Networked Systems Design and Implementation (NSDI 24). USENIX Association, Santa Clara, CA,
1511–1530.

[94] Yifan Qiao, Shu Anzai, Shan Yu, Haoran Ma, Yang Wang, Miryung Kim, and Harry Xu. 2024. ConServe: Harvesting GPUs for Low-Latency and
High-Throughput Large Language Model Serving. arXiv preprint arXiv:2410.01228 (2024).

[95] Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet Nadella, Sudarshan Srinivasan, Dipankar Das, Bharat Kaul, and Tushar Krishna. 2020. Sigma:
A sparse and irregular gemm accelerator with flexible interconnects for dnn training. In 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 58–70.

[96] Kiran Ranganath, Joshua D. Suetterlein, Joseph B. Manzano, Shuaiwen Leon Song, and Daniel Wong. 2021. MAPA: multi-accelerator pattern
allocation policy for multi-tenant GPU servers. In Proceedings of the International Conference for High Performance Computing, Networking, Storage
and Analysis (St. Louis, Missouri) (SC ’21). Association for Computing Machinery, New York, NY, USA, Article 99, 14 pages.

[97] Jinke Ren, Guanding Yu, and Guangyao Ding. 2021. Accelerating DNN Training in Wireless Federated Edge Learning Systems. IEEE Journal on
Selected Areas in Communications 39, 1 (2021), 219–232.

[98] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and Stephen W. Keckler. 2016. vDNN: Virtualized deep neural networks for
scalable, memory-efficient neural network design. In 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 1–13.

[99] Urvij Saroliya, Eishi Arima, Dai Liu, and Martin Schulz. 2023. Hierarchical Resource Partitioning on Modern GPUs: A Reinforcement Learning
Approach. In 2023 IEEE International Conference on Cluster Computing (CLUSTER). 185–196.

[100] Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajbhandari, Jared Casper, Zhun Liu, Shrimai Prabhumoye, George
Zerveas, Vijay Korthikanti, et al. 2022. Using deepspeed and megatron to train megatron-turing nlg 530b, a large-scale generative language model.
arXiv preprint arXiv:2201.11990 (2022).

[101] Jakob Stangl, Thomas Lorünser, and Sai Manoj Pudukotai Dinakarrao. 2018. A fast and resource efficient FPGA implementation of secret sharing
for storage applications. In 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 654–659.

[102] Jakob Stangl, Thomas Lorünser, and Sai Manoj Pudukotai Dinakarrao. 2018. A fast and resource efficient FPGA implementation of secret sharing
for storage applications. In 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE). 654–659. https://doi.org/10.23919/DATE.
2018.8342091

[103] Foteini Strati, Xianzhe Ma, and Ana Klimovic. 2024. Orion: Interference-aware, Fine-grained GPU Sharing for ML Applications. In Proceedings of
the Nineteenth European Conference on Computer Systems (Athens, Greece) (EuroSys ’24). Association for Computing Machinery, New York, NY,
USA, 1075–1092.

Manuscript submitted to ACM

https://doi.org/10.1145/3079856.3080254
https://doi.org/10.1145/3542929.3563467
https://doi.org/10.1145/3652892.3700768
https://doi.org/10.23919/DATE.2018.8342091
https://doi.org/10.23919/DATE.2018.8342091


1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

34 Huang et al.

[104] Biao Sun, Ziming Huang, Hanyu Zhao, Wencong Xiao, Xinyi Zhang, Yong Li, and Wei Lin. 2024. Llumnix: Dynamic Scheduling for Large Language
Model Serving. arXiv preprint arXiv:2406.03243 (2024).

[105] Qingxiao Sun, Liu Yi, Hailong Yang, Mingzhen Li, Zhongzhi Luan, and Depei Qian. 2022. QoS-aware dynamic resource allocation with improved
utilization and energy efficiency on GPU. Parallel Comput. 113 (2022), 102958.

[106] Cheng Tan, Zhichao Li, Jian Zhang, Yu Cao, Sikai Qi, Zherui Liu, Yibo Zhu, and Chuanxiong Guo. 2021. Serving DNN models with multi-instance
gpus: A case of the reconfigurable machine scheduling problem. arXiv preprint arXiv:2109.11067 (2021).

[107] Huailiang Tan, Yanjie Tan, Xiaofei He, Kenli Li, and Keqin Li. 2019. A Virtual Multi-Channel GPU Fair Scheduling Method for Virtual Machines.
IEEE Transactions on Parallel and Distributed Systems 30, 2 (2019), 257–270.

[108] Shanquan Tian, Wenjie Xiong, Ilias Giechaskiel, Kasper Rasmussen, and Jakub Szefer. 2020. Fingerprinting Cloud FPGA Infrastructures. In
Proceedings of the 2020 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (Seaside, CA, USA) (FPGA ’20). Association for
Computing Machinery, New York, NY, USA, 58–64. https://doi.org/10.1145/3373087.3375322

[109] Yash Ukidave, Xiangyu Li, and David Kaeli. 2016. Mystic: Predictive Scheduling for GPU Based Cloud Servers Using Machine Learning. In 2016
IEEE International Parallel and Distributed Processing Symposium (IPDPS). 353–362. https://doi.org/10.1109/IPDPS.2016.73

[110] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. 2018. Graviton: Trusted Execution Environments on GPUs. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 681–696. https://www.usenix.org/conference/osdi18/
presentation/volos

[111] Ne Wang, Ruiting Zhou, Ling Han, Hao Chen, and Zongpeng Li. 2023. Online Scheduling of Distributed Machine Learning Jobs for Incentivizing
Sharing in Multi-Tenant Systems. IEEE Trans. Comput. 72, 3 (2023), 653–667.

[112] Shaoqi Wang, Oscar J Gonzalez, Xiaobo Zhou, Thomas Williams, Brian D Friedman, Martin Havemann, and Thomas Woo. 2020. An efficient and
non-intrusive GPU scheduling framework for deep learning training systems. In SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 1–13.

[113] Xiaying Wang, Michele Magno, Lukas Cavigelli, and Luca Benini. 2020. FANN-on-MCU: An Open-Source Toolkit for Energy-Efficient Neural
Network Inference at the Edge of the Internet of Things. IEEE Internet of Things Journal 7, 5 (2020), 4403–4417.

[114] Xuhang Wang, Zhuoran Song, and Xiaoyao Liang. 2023. RealArch: A Real-Time Scheduler for Mapping Multi-Tenant DNNs on Multi-Core
Accelerators. In 2023 IEEE 41st International Conference on Computer Design (ICCD). 158–165.

[115] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang, Cheng Wang, Jian He, Yong Li, Liping Zhang, Wei Lin, and Yu Ding. 2022. MLaaS in the
Wild: Workload Analysis and Scheduling in Large-Scale Heterogeneous GPU Clusters. In 19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22). USENIX Association, Renton, WA, 945–960.

[116] Qizhen Weng, Lingyun Yang, Yinghao Yu, Wei Wang, Xiaochuan Tang, Guodong Yang, and Liping Zhang. 2023. Beware of Fragmentation:
Scheduling GPU-Sharing Workloads with Fragmentation Gradient Descent. In 2023 USENIX Annual Technical Conference (USENIX ATC 23). USENIX
Association, Boston, MA, 995–1008.

[117] Bingyang Wu, Zili Zhang, Zhihao Bai, Xuanzhe Liu, and Xin Jin. 2023. Transparent GPU Sharing in Container Clouds for Deep Learning Workloads.
In 20th USENIX Symposium on Networked Systems Design and Implementation (NSDI 23). USENIX Association, Boston, MA, 69–85.

[118] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Sivathanu, Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng, Hanyu
Zhao, Quanlu Zhang, Fan Yang, and Lidong Zhou. 2018. Gandiva: Introspective Cluster Scheduling for Deep Learning. In 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 595–610. https://www.usenix.org/conference/
osdi18/presentation/xiao

[119] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang, Pengyang Hou, Zhi Li, Yihui Feng, Wei Lin, and Yangqing Jia. 2020. AntMan: Dynamic Scaling on
GPU Clusters for Deep Learning. In 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20). USENIX Association,
533–548.

[120] Fei Xu, Jianian Xu, Jiabin Chen, Li Chen, Ruitao Shang, Zhi Zhou, and Fangming Liu. 2023. iGniter: Interference-Aware GPU Resource Provisioning
for Predictable DNN Inference in the Cloud. IEEE Transactions on Parallel and Distributed Systems 34, 3 (2023), 812–827.

[121] Xin Xu, Na Zhang, Michael Cui, Michael He, and Ridhi Surana. 2019. Characterization and Prediction of Performance Interference on Mediated
Passthrough GPUs for Interference-aware Scheduler. In 11th USENIXWorkshop on Hot Topics in Cloud Computing (HotCloud 19). USENIX Association,
Renton, WA.

[122] Zichuan Xu, Liqian Zhao, Weifa Liang, Omer F Rana, Pan Zhou, Qiufen Xia, Wenzheng Xu, and Guowei Wu. 2020. Energy-aware inference
offloading for DNN-driven applications in mobile edge clouds. IEEE Transactions on Parallel and Distributed Systems 32, 4 (2020), 799–814.

[123] Mochi Xue, Jiacheng Ma, Wentai Li, Kun Tian, Yaozu Dong, Jinyu Wu, Zhengwei Qi, Bingsheng He, and Haibing Guan. 2018. Scalable GPU
Virtualization with Dynamic Sharing of Graphics Memory Space. IEEE Transactions on Parallel and Distributed Systems 29, 8 (2018), 1823–1836.

[124] Yuqi Xue, Yiqi Liu, Lifeng Nai, and Jian Huang. 2023. V10: Hardware-Assisted NPU Multi-tenancy for Improved Resource Utilization and Fairness.
In Proceedings of the 50th Annual International Symposium on Computer Architecture (Orlando, FL, USA) (ISCA ’23). Association for Computing
Machinery, New York, NY, USA, Article 24, 15 pages.

[125] Yi Yang, Ping Xiang, Mike Mantor, Norm Rubin, and Huiyang Zhou. 2012. Shared memory multiplexing: a novel way to improve GPGPU
throughput. In Proceedings of the 21st International Conference on Parallel Architectures and Compilation Techniques (Minneapolis, Minnesota, USA)
(PACT ’12). Association for Computing Machinery, New York, NY, USA, 283–292.

Manuscript submitted to ACM

https://doi.org/10.1145/3373087.3375322
https://doi.org/10.1109/IPDPS.2016.73
https://www.usenix.org/conference/osdi18/presentation/volos
https://www.usenix.org/conference/osdi18/presentation/volos
https://www.usenix.org/conference/osdi18/presentation/xiao
https://www.usenix.org/conference/osdi18/presentation/xiao


1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

On Efficiency, Fairness and Security in AI Accelerator Resource Sharing: A Survey 35

[126] Jianguo Yao, Qiumin Lu, Run Tian, Keqin Li, and Haibing Guan. 2023. An Economy-Oriented GPU Virtualization With Dynamic and Adaptive
Oversubscription. IEEE Trans. Comput. 72, 5 (2023), 1371–1383.

[127] Shuochao Yao, Jinyang Li, Dongxin Liu, Tianshi Wang, Shengzhong Liu, Huajie Shao, and Tarek Abdelzaher. 2020. Deep compressive offloading:
Speeding up neural network inference by trading edge computation for network latency. In Proceedings of the 18th conference on embedded
networked sensor systems. 476–488.

[128] Zhisheng Ye, Wei Gao, Qinghao Hu, Peng Sun, Xiaolin Wang, Yingwei Luo, Tianwei Zhang, and Yonggang Wen. 2024. Deep Learning Workload
Scheduling in GPU Datacenters: A Survey. ACM Comput. Surv. 56, 6, Article 146 (jan 2024), 38 pages.

[129] Ting-An Yeh, Hung-Hsin Chen, and Jerry Chou. 2020. KubeShare: A Framework to Manage GPUs as First-Class and Shared Resources in Container
Cloud. In Proceedings of the 29th International Symposium on High-Performance Parallel and Distributed Computing (Stockholm, Sweden) (HPDC
’20). Association for Computing Machinery, New York, NY, USA, 173–184.

[130] Fuxun Yu, Di Wang, Longfei Shangguan, Minjia Zhang, Chenchen Liu, and Xiang Chen. 2022. A survey of multi-tenant deep learning inference on
gpu. arXiv preprint arXiv:2203.09040 (2022).

[131] Hangchen Yu, Arthur Michener Peters, Amogh Akshintala, and Christopher J. Rossbach. 2020. AvA: Accelerated Virtualization of Accelerators. In
Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems (Lausanne,
Switzerland) (ASPLOS ’20). Association for Computing Machinery, New York, NY, USA, 807–825.

[132] Peifeng Yu and Mosharaf Chowdhury. 2020. Fine-Grained GPU Sharing Primitives for Deep Learning Applications. In Proceedings of Machine
Learning and Systems, I. Dhillon, D. Papailiopoulos, and V. Sze (Eds.), Vol. 2. 98–111.

[133] Qi Yu, Bruce Childers, Libo Huang, Cheng Qian, Hui Guo, and Zhiying Wang. 2020. Coordinated Page Prefetch and Eviction for Memory
Oversubscription Management in GPUs. In 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS). 472–482.

[134] Deze Zeng, Andong Zhu, Lin Gu, Peng Li, Quan Chen, and Minyi Guo. 2023. Enabling Efficient Spatio-Temporal GPU Sharing for Network
Function Virtualization. IEEE Trans. Comput. 72, 10 (2023), 2963–2977.

[135] Shulin Zeng, Guohao Dai, Niansong Zhang, Xinhao Yang, Haoyu Zhang, Zhenhua Zhu, Huazhong Yang, and Yu Wang. 2023. Serving Multi-
DNN Workloads on FPGAs: A Coordinated Architecture, Scheduling, and Mapping Perspective. IEEE Trans. Comput. 72, 5 (2023), 1314–1328.
https://doi.org/10.1109/TC.2022.3214113

[136] Bingyi Zhang, Hanqing Zeng, and Viktor K Prasanna. 2023. Graphagile: An fpga-based overlay accelerator for low-latency gnn inference. IEEE
Transactions on Parallel and Distributed Systems 34, 9 (2023), 2580–2597.

[137] Feng Zhang, Zheng Chen, Chenyang Zhang, Amelie Chi Zhou, Jidong Zhai, and Xiaoyong Du. 2021. An Efficient Parallel Secure Machine Learning
Framework on GPUs. IEEE Transactions on Parallel and Distributed Systems 32, 9 (2021), 2262–2276.

[138] Haoyang Zhang, Yirui Zhou, Yuqi Xue, Yiqi Liu, and Jian Huang. 2023. G10: Enabling An Efficient Unified GPU Memory and Storage Architecture
with Smart Tensor Migrations. In Proceedings of the 56th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO ’23). Association
for Computing Machinery, New York, NY, USA, 395–410.

[139] Kai Zhang, Bingsheng He, Jiayu Hu, Zeke Wang, Bei Hua, Jiayi Meng, and Lishan Yang. 2018. G-NET: Effective GPU Sharing in NFV Systems. In
15th USENIX Symposium on Networked Systems Design and Implementation (NSDI 18). USENIX Association, Renton, WA, 187–200.

[140] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li, Qi Guo, Tianshi Chen, and Yunji Chen. 2016. Cambricon-X: An accelerator
for sparse neural networks. In 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 1–12.

[141] Chen Zhao, Wu Gao, Feiping Nie, and Huiyang Zhou. 2022. A Survey of GPU Multitasking Methods Supported by Hardware Architecture. IEEE
Transactions on Parallel and Distributed Systems 33, 6 (2022), 1451–1463.

[142] Xiaohui Zhao, Jianguo Yao, Ping Gao, and Haibing Guan. 2018. Efficient Sharing and Fine-Grained Scheduling of Virtualized GPU Resources. In
2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS). 742–752.

[143] Yihao Zhao, Yuanqiang Liu, Yanghua Peng, Yibo Zhu, Xuanzhe Liu, and Xin Jin. 2022. Multi-resource interleaving for deep learning training. In
Proceedings of the ACM SIGCOMM 2022 Conference (Amsterdam, Netherlands) (SIGCOMM ’22). Association for Computing Machinery, New York,
NY, USA, 428–440.

[144] Zhuangdi Zhu, Alex X Liu, Fan Zhang, and Fei Chen. 2018. FPGA resource pooling in cloud computing. IEEE Transactions on Cloud Computing 9, 2
(2018), 610–626.

Received 27 August 2024; revised 15 January 2025; accepted 25 February 2025

Manuscript submitted to ACM

https://doi.org/10.1109/TC.2022.3214113

	Abstract
	1 Introduction
	1.1 Overview of the Field
	1.2 Existing Surveys
	1.3 Article Organization

	2 Background
	2.1 Brief View of AI Accelerators
	2.2 Performance Measures for AI Workloads
	2.3 Key Concepts and Fundamentals

	3 Efficiency-oriented AI Accelerator Sharing
	3.1 Efficiency of Training
	3.2 Efficiency of Inference
	3.3 Efficiency of Mixed Workloads
	3.4 Discussion

	4 Rising Concerns in AI Accelerator Sharing
	4.1 Fairness
	4.2 Interference
	4.3 Security
	4.4 Discussion

	5 Open Challenges
	5.1 SLA-aware Resource Sharing and Job Packing
	5.2 Resource Sharing over Heterogeneous Accelerators
	5.3 Coordination of Global Scheduler and Local Schedulers
	5.4 Resource Contention and User Experience in LLM Workloads
	5.5 Accelerator Sharing Expands from Device-Level to Cluster-Level

	6 CONCLUSIONS
	Acknowledgments
	References

