19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

46
47
48
49

50

52

On Efficiency, Fairness and Security in Al Accelerator Resource Sharing: A

Survey

JJAHUA HUANG, South China University of Technology, China and Pengcheng Laboratory, China
WEIWEI LIN*, South China University of Technology, China and Pengcheng Laboratory, China
WENTAI WU, Jinan University, China

YANG WANG, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
HAOCHENG ZHONG, South China University of Technology, China

XINHUA WANG, South China University of Technology, China

KEQIN LI, State University of New York, USA

The effective and efficient utilization of Al accelerators represents a critical issue for the practitioners engaged in the field of deep
learning. Practical evidence from companies such as Alibaba, SenseTime, and Microsoft reveals that the utilization of production GPU
clusters in the industry is generally between 25% and 50%. This indicates a significant opportunity for improvement. To this end, AI
accelerator resource sharing has emerged as a promising approach to the performance optimization of multi-tenant clusters. This
survey covers this line of studies from 2016 to 2024, focusing primarily on system efficiency while also including discussion on fairness,
interference, and security in Al accelerator sharing. We revisit the fundamentals and key concepts, followed by a comprehensive
review of recent advances in the field. We find that over 70% of the studies focus on efficiency improvement. We also observe that
approximately half of the reviewed studies have made their source code publicly available, while fewer than one-third of the studies did
not utilize a physical machine for experimentation. Finally, based on the limitations of existing research, we outline several directions
for future research concerning the integration of sharing with large language models (LLMs), coordination between schedulers and

application-layer metrics, and collaboration among heterogeneous accelerators.

CCS Concepts: « General and reference — Surveys and overviews; - Computing methodologies — Massively parallel algorithms;

« Computer systems organization — Multicore architectures; « Security and privacy — Privacy protections.
Additional Key Words and Phrases: Al accelerators, Resource sharing, Artificial Intelligence, fairness, security

ACM Reference Format:

Jiahua Huang, Weiwei Lin, Wentai Wu, Yang Wang, Haocheng Zhong, Xinhua Wang, and Keqin Li. 2024. On Efficiency, Fairness and
Security in Al Accelerator Resource Sharing: A Survey. In Proceedings of Make sure to enter the correct conference title from your rights
confirmation emai (Conference acronym "XX). ACM, New York, NY, USA, 35 pages. https://doi.org/XXXXXXX.XXXXXXX

“Corresponding author

Authors’ Contact Information: Jiahua Huang, ftjiah.huang@mail.scut.edu.cn, South China University of Technology, Guangzhou, China and Pengcheng
Laboratory, Shenzhen, China; Weiwei Lin, linww@scut.edu.cn, South China University of Technology, Guangzhou, China and Pengcheng Laboratory,
Shenzhen, China; Wentai Wu, Jinan University, Guangzhou, China, wentaiwu@jnu.edu.cn; Yang Wang, yang.wangl@siat.ac.cn, Shenzhen Institute
of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Haocheng Zhong, cshczhong@mail.scut.edu.cn, South China University
of Technology, Guangzhou, China; Xinhua Wang, 18340826607@163.com, South China University of Technology, Guangzhou, China; Keqin Li, State
University of New York, New York, USA, lik@newpaltz.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/XXXXXXX.XXXXXXX

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

104

2 Huang et al.

1 INTRODUCTION

The rapid advancements in artificial intelligence (AI) and the growing complexity of deep learning models have led to
an unprecedented demand for high-performance computing resources. Al accelerators, including Graphics Processing
Units (GPUs) [41], Tensor Processing Units (TPUs) [52], and other custom Al chips, have emerged as critical components
in datacenters designed to handle the intensive computational requirements of deep learning workloads.

Al accelerators are specifically engineered to provide significant performance improvements for deep learning tasks
through massive parallelism and specialized hardware features. Despite their capabilities, managing and scheduling
resources within datacenters equipped with Al accelerators remains a significant challenge. As demonstrated by data
released by companies including Alibaba [115], SenseTime [42] and Microsoft [47], the utilization of production GPU
clusters is typically below 50%, which suggests that there is still considerable room for improvement. The heterogeneity
of these accelerators and the dynamic nature of deep learning workloads necessitate advanced resource management
strategies to optimize performance, cost, and resource utilization.

Currently, resource sharing in Al accelerator-based datacenters is a new area of interest. Techniques such as static
partitioning, dynamic resource allocation, virtualization, and multi-tenancy have been developed to address these
challenges. Static partitioning involves dividing resources into fixed segments for different tasks. Dynamic resource
allocation adjusts resources in real-time based on demand. Virtualization abstracts physical resources to create flexible
and isolated environments for multiple workloads, while multi-tenancy allows multiple users or applications to share
the same physical resources. Effective resource sharing strategies can significantly enhance the efficiency and flexibility
of Al accelerator utilization, ensuring that resources are dynamically allocated to match the computational demands of
deep learning applications. This not only maximizes resource utilization but also helps in maintaining quality of service
(QoS) and reducing operational costs.

This survey aims to provide a comprehensive review of state-of-the-art technologies for resource sharing in data-
centers equipped with Al accelerators. To the best of our knowledge, it is the first to specifically focus on accelerator
sharing technologies in both research and production environments for datacenters that handle multiple types of

workloads. Our main contributions are as follows:

e We provide an overview of recent works in the field, revisit the architectures of mainstream Al accelerators,
and summarize the key concepts and fundamentals for accelerator resource sharing.

e We navigate the readers through the latest studies in the field by the different aims of system optimization
including efficiency, fairness, interference, and security. This taxonomy reveals where the majority of interest is
and where more effort should be made.

e We analyze the limitations of existing technologies, explore emerging trends, and propose future research

directions to address the evolving needs of deep learning applications in Al-accelerated environments.

1.1 Overview of the Field

This survey covers the studies from 2016 to 2024 in relevance to accelerator sharing technology. We first present the
statistics from different aspects in Figure 1. Our first observation is that most of recent studies consider efficiency im-
provement as their primary objective, indicating that the main role of sharing technology is to enhance the performance
of Al accelerators. Therefore, our survey will concentrate on efficiency, categorizing different types of efficiency to

explore the distinctions between various optimization methods. We also find that a dominating percentage of research

Manuscript submitted to ACM

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

149

On Efficiency, Fairness and Security in Al Accelerator Resource Sharing: A Survey 3

in the field is conducted on GPUs, while other types of Al accelerator only account for <15% combined. Most of the

studies experimented on real clusters and over 40% of the them have source code publicly available (Figure 1d).

71
70
» 33
. o0
o
g 25 g- 50
g 8
= 19 5 o
3 @
£ 'E 30
E 5
=z
© 20
8 8 , 16
B 4 4 10 7
2 4
.
g (2L S Wi T bty S, O Effency Faimess Interference secrity
allocation and isolation sharing
(2) Key techniques employed (b) Objectives of optimization
GPU FPGA & ASIC Open-source Not Open-source Real-Cluster Real-Cluster & Simulation
NPU & TPU Other Simulation
12.8% 9.6% 43%
N
33.0% 25.8%
o
67.0% 69.9%
76.6%
(c) Types of accelerator (d) Source code availability (e) Setup of Experiment

Fig. 1. A statistic view of the studies surveyed in this paper.

1.2 Existing Surveys

We compare our work with related surveys to provide a better understanding of our contributions to the community.

Many previous surveys limit their attention to GPU sharing [40, 53]. In contrast, our work encompasses GPUs,
TPUs, Neural Processing Units (NPUs), and other custom Al chips, and we survey sharing technologies across
several levels.

Zhao et al. [141] surveyed commercial GPU architectures to support GPU multitasking. However, we include
both software and hardware sharing approaches.

Yu et al. [130] summarized the challenges and optimization opportunities for multi-tenant DL inference on a
single GPU. But our survey consider both training and inference workloads.

Liang et al. [66] surveyed GPU sharing technologies that apply various approaches and network bandwidth-
sharing technologies operating at different granularity levels. However, this survey do not cover as much
ground as our work does, as it primarily focuses on GPUs and largely overlook other accelerators such as NPUs.
There are surveys of GPU workload scheduling at the datacenter level [79, 128], whilst our primary focus is

accelerator sharing at the node or device level.

The comparison of all related surveys is shown in Table 1. This survey focuses on recent advancements of sharing

technologies in Al accelerators, with a particular emphasis on the optimization of resources and key performance

Manuscript submitted to ACM

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

206
207

208

Table 1. A Comparison of Related Surveys

Huang et al.

Including Training and Inference Workloads

Focus on Card-level Sharing

Comparison of Effects

Survey Year | Including NPU or TPU

[40] 2017
[53] 2018
[79] 2020
[141] 2021
[130] 2022
[128] 2024
[66] 2024
ours -

indicators such as efficiency, fairness, interference, and security. Furthermore, we identify current trends, elucidate

technological constraints, and propose avenues for future research in the domain of deep learning in Al-accelerated

environments.

Sec 2
Background

(2.1) Introduction of

Al Accelerators
GPU NPU
TPU Other

Table: Comparison of
Mainstream Accelerators
(2.2) Performance

Measures for Al Workloads

Training Inference

(2.3) Key Concepts
and Fundamentals
Profiling and Predicting

Resource Sharing

Figure: Concepts of accelerator sharing

Sec 5

Sec 3

Efficiency-oriented Sharing

(3.1) Training
Time Throughput

Table: Studies on Sharing
for DL Training Workloads

(3.2) Inference
Latency Throughput

Table: Studies on Sharing
for DL Inference Workloads

(3.3) Mix Cost
Time Throughput

Table: Studies on Sharing
for DL Mix Workloads

(3.4) Discussion

Figure: Summary of Efficiency
Optimization of Metrics

Open Challenges

Manuscript submitted to ACM

Fig. 2. Structure of this Article

Sec 4
Other Concerns

Table: Studies on Non-Efficiency-Oriented
Sharing for DL Workloads

(4.1) Fairness

(4.2) Interference
Computing

Memory and Bandwidth

(4.3) Security

(4.4) Discussion

Sec 6

Conclusions

209
210
211
212
213

214

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

247

249

258

259

On Efficiency, Fairness and Security in Al Accelerator Resource Sharing: A Survey 5

1.3 Article Organization

The structure of this article is organized as follows: Section 2 introduces the architecture of Al accelerators, performance
measures of Al workloads and key concepts of sharing technology. The main body of this article is presented in Figure
2. Section 3 discusses various works that optimize the efficiency of the accelerators, which are categorized by training,
inference, and mixed workloads. Section 4 examines research focused on fairness, interference and security for Al
accelerators. Section 5 highlights existing challenges, in addition to those addressed in the aforementioned sections.

Section 6 concludes this survey article.

2 BACKGROUND

As depicted in Figure 2, this section lays the ground for understanding Al accelerator sharing by focusing on three critical
aspects. It begins with a detailed comparison of mainstream Al accelerators—GPUs, TPUs, NPUs, and edge-specific
accelerators—highlighting their architectures and capabilities. Next, it defines key performance metrics relevant to
Al workloads, such as throughput, latency, and utilization, providing a foundation for evaluating resource efficiency.
Finally, it introduces essential concepts and principles of accelerator sharing, supported by clear visualizations of sharing
mechanisms and resource allocation strategies, setting the stage for a deeper exploration of optimization approaches in

subsequent sections.

2.1 Brief View of Al Accelerators

This section establishes the foundational knowledge required to understand Al accelerators and their significance in
modern computing. It introduces the key concepts related to Al accelerator technologies, Table 2 provides a comparative

analysis of mainstream accelerators, complementing the discussion in this section.

Table 2. Comparison of Mainstream Accelerators

Dimension GPU TPU NPU Edge-Specific

Accelerators

Ecosystem Ma- Mature CUDA TensorFlow-focused Growing ecosystem, Vendor-specific,

turity ecosystem, large ecosystem limited tool support fragmented
community

Framework PyTorch, TensorFlow, TensorFlow, Limited Limited Vendor-specific only

Compatibility JAX JAX PyTorch/TensorFlow

Precision Sup- FP32, FP16, INT8, FP8 BF16, INT8 FP16, INTS, INT4 Primarily INT8, INT4

port

Memory Archi-
tecture

Key Metrics
(Performance)

HBM3, 4.8TB/s

500-4000 TOPS/s(H200),

350-700W

HBM?2, 1200GB/s

275-420 TOPS/s (v4),
175-250W

HBM2e, 392GB/s

512 TOPS/s(910B),
160-400W

Limited on-chip
memory

200 TOPS/s(Intel Agilex
9), 10-120W

BF16: Brain Floating Point, 16-bit format optimized for deep learning

2.1.1 Graphics Processing Unit. GPUs, initially designed for rendering graphics, are now widely used for deep learning

and other general-purpose computing tasks. They feature a large number of parallel processing units, making them

Manuscript submitted to ACM

6 Huang et al.

261 well-suited for large-scale matrix operations and supporting various machine learning frameworks and algorithms.

262 Notable products include NVIDIA’s A100, V100, and Tesla series, as well as AMD’s Radeon Instinct series.
263

264
DRAM

265 Memory Controller

266 (Graphics Processing Cluster (Graphics Processing Cluster
Streaming Multiprocessor Streaming Multiprocessor

267 L1 cache
A

268

Streaming Multiprocessor Streaming Multiprocessor

269
270

o

o -

&

® [Graphics Processing Cluster
Streaming Multiprocessor

271

(Graphics Processing Cluster
Streaming Multiprocessor

ayoeo z1
a10d

272
273

Streaming Multiprocessor Streaming Multiprocessor

274

275

276 Memory Controller

277 DRAM
278

(a) GPU Architecture
279

DDR3 interfaces FIF
281 1
282 [Vector unit
283 Matrix SIMD SIMD

Unified ~ SYstolic multiply unit Vector Registers -

data
buffer setup Instruction]

Memory

Systolic Array

284
285

|

O4I4 Indy|

!

— = e o Q2
m

8oeIoIUI 8]0d

286

@oepIa)UI 1SOH

Accumulators SRAM Buffers
287 —_— —

288 Activation I—l -

. "]
289 ' { Host } Output FIFO
290

291 (b) TPU Architecture [52] (c) NPU Architecture [124]
292
293 Fig. 3. Architecture of part Al accelerators

294

. As show in Figure 3a, the structure of a modern GPU features multiple Graphics Processing Clusters (GPCs), each
296

297 containing several Streaming Multiprocessors (SMs). The SMs are responsible for executing parallel computational

298 tasks. Each SM has its own ALUs and L1 cache, enabling the performance of mathematical operations and rapid data

299 access. The L2 cache is shared across the GPU, facilitating enhanced data access efficiency. The Memory Controller

o oversees communication with external DRAM, guaranteeing efficient data transfer, while the PCle interface connects
301

200 the GPU to other components of the computer, allowing for data exchange between the CPU and GPU.

303 Defined by Nvidia [4], GPU utilization refers to the percentage of time that certain activities occur during the past

304 sample period. This can be expressed as:

306 Tactive
307 Uspu = T (1)
total

308
where:

309
310 e Uspy GPU utilization.

311 ® Tactive Active time during which the GPU is performing computations within a given time slice.

312 Manuscript submitted to ACM

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364

On Efficiency, Fairness and Security in Al Accelerator Resource Sharing: A Survey 7

e T;+a Total length of the slice.

2.1.2 Neural Processing Unit. NPU have significantly advanced, offering increased computational power and energy
efficiency for Al tasks. They are being integrated into System-on-Chip (SoC) designs for seamless Al processing and are
widely deployed in edge devices like smartphones and IoT gadgets for real-time, on-device Al computations. Leading
implementations include Google’s Edge TPU [2], Apple’s Neural Engine [1], Huawei’s Ascend [3], and Intel’s Movidius
Myriad X, all supporting a range of Al models with enhanced software and ecosystem support. The future of NPUs
focuses on greater scalability, broader AI model compatibility, and improved developer tools.

The architecture of an NPU, similar to Figure 3c, comprises a host for controlling operations, an instruction memory
for storing execution commands, and a vector unit with SMID units and vector registers for parallel processing. The
use of SRAM buffers facilitates rapid data storage, while the systolic array of processing elements (PEs) enables the
efficient execution of matrix operations. Input and output FIFO buffers facilitate a seamless data flow to and from the
systolic array, thereby enabling high-throughput processing, which is well-suited to the demands of large-scale neural
network tasks.

The utilization for NPUs can be defined as the ratio of used PE to the total available PE over a given time slice. The

formula is:

UNPU = 57— (2
where:

e Unpy NPU utilization.
® PE,s.q Number of PEs actively used during a time slice.
® PE,,;q1 Total number of PEs available in the NPU.

2.1.3 Tensor Processing Unit. TPU was developed by Google to accelerate machine learning workloads, particularly for
deep learning applications. Introduced in 2016, TPUs [51, 52, 87] are designed to handle the demanding computational
requirements of training and inference for large neural networks. They are optimized for Google’s TensorFlow frame-
work, enabling faster and more efficient execution of machine learning models.

Figure 3b depicts the architectural design of the TPU system, which has been optimized for high-performance deep
learning operations. The system comprises a PCle interface and a host interface for communication with the host
system, as well as DDR3 interfaces for access to external memory. A first-in, first-out (FIFO) queue buffers data for the
matrix multiply unit, which performs the core matrix computations. The data is organized by the systolic data setup,
stored in a unified buffer, and processed through accumulators. The results then proceed through the activation and
normalization/pooling stages, where non-linear functions and dimensionality reduction are applied, thus optimizing
the TPU for fast and efficient deep learning tasks.

The utilization of TPU is often measured in terms of the matrix processing units, below are the formulas.

MXUysed

Urpu = —7— (3
MXUtotal

where:
e Urpy MXU utilization.
® MXU,.q The number of active MXU cycles (or operations) during a time slice.

® MXUy;orq1 The total available MXU cycles (or operations) during the same time slice.
Manuscript submitted to ACM

365
366
367
368
369
370

389
390
391
392
393

394

396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411

412

8 Huang et al.

2.1.4 Other Al accelerators. Field Programmable Gate Arrays (FPGAs) [76, 81, 101, 102, 135, 144] are reconfigurable
hardware accelerators that offer high flexibility and parallel processing capabilities. While FPGAs are less common for
large-scale Al training due to their programming complexity and the dominance of GPUs, they have shown increasing
relevance in Al inference tasks, particularly in edge and embedded systems. Their ability to achieve low latency and
power efficiency makes them well-suited for real-time inference scenarios. Application Specific Integrated Circuits
(ASICs) [15, 17-19, 36, 39, 70, 89, 95, 140], designed for specialized tasks, deliver superior efficiency and performance
through hardware-level optimization. While ASICs lack the programmability needed for diverse training workloads,
their deterministic architecture and energy efficiency make them highly effective for inference. DSPs excel in digital
signal processing with low latency and high throughput. Although DSPs are not widely utilized for Al training due to
their limited support for large-scale matrix operations, they are employed in lightweight Al inference tasks, especially
in applications requiring real-time processing and constrained computational resources. Hybrid accelerators combine
multiple accelerator types to handle diverse workloads. However, they are not the primary choice for Al training, where
specialized GPUs and TPUs prevail.

While GPUs and TPUs remain the predominant accelerators for Al training due to their programmability and
computational throughput, accelerators such as FPGAs, ASICs, and DSPs demonstrate significant potential for inference,
particularly in scenarios prioritizing energy efficiency, low latency, and real-time performance. Hybrid accelerators

further broaden the design space for Al inference but remain underexplored for large-scale training.

2.2 Performance Measures for Al Workloads

In the realm of Al accelerators, workloads are primarily categorized into training and inference tasks. These two types
of workloads exhibit distinct characteristics and demands, influencing how Al accelerators are designed and optimized.
This section explores the specific objectives of training and inference workloads, highlights the key performance metrics
for each. It is important to note that we will focus exclusively on metrics that can be optimized through scheduling
technologies. To ensure comprehensive coverage of the literature, the metrics in this study are expressed in a more

generalized form.

2.2.1 Training. Deep learning training tasks involve using large datasets to adjust the model parameters in order to
minimize prediction errors. This process, known as training, requires substantial computational resources and time
because it involves both forward propagation and backpropagation. The model learns by iteratively updating its weights
through multiple epochs until it converges to an optimal set of parameters.

These tasks are characterized by high computational intensity, extensive memory and storage requirements, and

long duration. Key performance metrics for training workloads are show below.

Training Time. Training time, the duration required to complete the entire deep learning model training process, is
critically important for several reasons. The training time is defined in Equation (4). Additionally, optimizing training
time reduces computational and labor costs, especially in cloud environments where resource usage is billed by time,

thus saving significant expenses.
_ NXEXF

= 4
PxBxn)

where:

o T The total training time.
e N The number of samples in the dataset.
Manuscript submitted to ACM

417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451

453
454

456
457

459
460
461
462
463
464
465
466
467

468

On Efficiency, Fairness and Security in Al Accelerator Resource Sharing: A Survey 9

e E The total number of epochs (training iterations).

e F The computational cost per sample for forward and backward propagation, typically proportional to the
model’s complexity.

o P The hardware performance, measured in floating-point operations per second (FLOPS). If sharing technologies
involve sharing hardware resources (like accelerators or processors), this can impact hardware performance.

o B The batch size, which is the number of samples processed together in one iteration. Sharing data across nodes
or devices could allow for larger batch sizes, which can improve computational efficiency.

o 1 The overall efficiency factor, accounting for I/O performance, memory bandwidth, parallel computation
efficiency, and other overheads. By sharing data buffers and optimizing memory access patterns, sharing

technologies can improve I/O performance and memory bandwidth utilization.

As data scales and model complexity increase, optimizing training time becomes essential for efficiently handling
large datasets and developing complex models. Techniques like efficient scheduling algorithms [43, 83, 112], distributed
training [49, 64, 97], and resources sharing [69, 133, 143] can significantly reduce training times by improving resource

utilization, preventing resource idleness, and ensuring proper task distribution and coordination among nodes.

System Throughput. System throughput, as defined in Equation (5), the rate at which a system processes training
tasks or data samples, is crucial for deep learning training as it accelerates model training, optimizes resource utilization,
reduces costs, and effectively handles large-scale data and complex models. Efficient scheduling technologies, such as
dynamic resource allocation [34, 105, 119] and parallelism [45, 80, 85, 86, 100] significantly enhance throughput. This
leads to faster development cycles, lower operational costs, and better scalability, ultimately advancing deep learning
capabilities and applications.

n .
i=1 Ri

Tp= =2 (5

where:

o T, is the system throughput.
e R; is the number of tasks completed in the i-th interval.
o T is the total time taken to complete those tasks. Sharing resources for reducing synchronization overhead and

communication delays can lead to faster task completion.

2.2.2 Inference. Deep learning inference tasks involve using a pre-trained model to make predictions on new, unseen
data. The computational demands for inference are significantly lower compared to training, as it only requires forward
propagation through the already-optimized model. Inference tasks are designed for real-time or near-real-time prediction
and are often deployed on edge devices or servers. The focus during inference is on reducing latency and enhancing
efficiency, making it crucial to optimize for low power consumption and quick response times. Techniques such as
model compression and hardware acceleration are commonly employed to ensure that the inference can run effectively
in resource-constrained environments.

The primary characteristics of inference workloads include latency sensitivity, moderate computational resource
requirements, and high concurrency. Key performance metrics for optimizing inference workloads are summarized

below.

Manuscript submitted to ACM

469
470

471

473
474

476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499

500

502
503

505

506

508
509

511
512
513
514
515
516
517
518
519

520

10 Huang et al.

Latency. Latency, as defined in Equation (6), refers to the time taken from the moment an input is received by the
system until the corresponding output is produced in the context of inference tasks. It is a critical performance metric
for real-time and near-real-time applications. Low latency ensures quick, responsive interactions, timely and accurate
decisions, higher customer satisfaction, and efficient resource utilization. Optimizing for low latency is essential for
delivering high-performance, reliable Al solutions across various domains, enhancing both operational efficiency and
market competitiveness. Low latency systems can also handle a higher number of concurrent users or requests, making
them more scalable. This is crucial for applications with high user traffic or those deployed in cloud environments

where resources must be efficiently managed.

L=I+C+0 (6)

where:

e L is the total latency.

e [is the input processing time, which includes data preprocessing and transfer to the accelerator. Techniques
such as shared memory buffers and optimized data pipelines can significantly lower input processing time.

e C is the computation time on the accelerator, which includes the forward pass through the neural network.
Sharing accelerator resources more effectively can lead to better utilization of computational power, reducing
the time required for the forward pass through the neural network.

e O is the output processing time, which includes data post-processing and transfer back from the GPU.

Methods to optimize latency include using model compression technologies [8, 127], optimizing communication
[71], and leveraging hardware accelerators [124, 136]. These strategies collectively help in achieving the low latency

necessary for superior Al performance.

System Throughput. System throughput in the context of inference tasks refers to the number of inference requests
or data samples the system can process in a given period. It measures the system’s capacity to handle concurrent
tasks and is crucial for evaluating the efficiency and scalability of Al applications. High throughput is essential for
applications with a lot of users, such as online services, real-time analytics, and large-scale IoT deployments. While both
training and inference benefit from high throughput, the optimization technologies and performance metrics differ.

The main approaches to improve system throughput of inference task including resources sharing [37, 46, 134],

requests preemption [23] and Profiling [22].

Power Consumption. Power consumption, as defined in Equation (7), refers to the amount of electrical energy
used by a system to perform AI workloads, including both training and inference tasks. Power consumption is a
critical consideration for Al systems, especially in large-scale data centers, battery-powered edge devices, and energy-
constrained environments. Efficient power usage leads to extended battery life, reduced operational costs, improved
thermal management, and a smaller environmental footprint. By leveraging specialized hardware [25], edge computing
[59, 122], dynamic power management [78], and software optimization [30, 113], it is possible to significantly reduce
the power consumption of tasks, ensuring efficient and sustainable Al deployments across various environments.

_Er X Ry

Po=——)
n

where:

Manuscript submitted to ACM

524

525

526

527

528

564

566

567

568

569

570

571

572

On Efficiency, Fairness and Security in Al Accelerator Resource Sharing: A Survey 11

e P, is the power consumption.

e E; is the energy consumption per task. Balancing the load and reducing idle times, which can lower the energy
consumption per task.

® Ry is the rate of tasks (number of tasks or batches per second). Sharing technologies that enable better parallel
processing can increase the rate of tasks by allowing more tasks to be processed simultaneously.

o 1 is the overall efficiency factor, accounting for hardware and software efficiencies. Ideally, the efficiency is 1,

but in practice it is usually less than 1 due to various losses.

2.3 Key Concepts and Fundamentals

This section examines the fundamental rationale behind Al accelerator sharing, focusing on two key paradigms:
profiling and prediction techniques that analyze workload patterns to optimize resource allocation, and resource
sharing techniques that implement strategies like fine-grained partitioning and virtualization for dynamic workload

management.

2.3.1 Profiling and Predicting Techniques. Profiling and predicting [83, 114, 121, 133] involves collecting detailed
performance data through experiments or simulations before the actual execution of tasks. This data includes metrics
such as execution time, resource utilization, and behavior patterns of the tasks. Based on this profiling data, predictive
models are developed to estimate the performance of tasks under various conditions. These models can use historical
data, statistical methods, or machine learning technologies to provide accurate predictions. The primary goal is to
assist the scheduler in making informed decisions about resource allocation and task scheduling, ensuring efficient and

optimized execution.
2.3.2 Resource Sharing Techniques.

Spatial sharing. Spatial sharing, as show in Figure 4a, refers to the simultaneous utilization of different hardware
resources by multiple tasks within the same system. For instance, different processor cores or distinct sections of an
accelerator can be allocated to different tasks at the same time. This method leverages the parallel execution capabilities
of modern hardware to increase throughput and resource utilization. By distributing tasks across available resources,
spatial sharing aims to minimize idle times and maximize the effective use of computational power. However, it requires
sophisticated resource allocation strategies to prevent conflicts and ensure fair distribution among tasks.

Nvidia offers two distinct spatial sharing methods: Multi-Process Service (MPS) [6] and Multi-Instance GPU (MIG)
[5]. MPS enables the concurrent execution of multiple CUDA applications on a single GPU by establishing a shared
environment that optimizes resource utilization and minimizes latency through parallel execution. However, it necessi-
tates sophisticated scheduling to effectively manage resource contention. MIG partitions a single GPU into multiple
isolated instances, each with dedicated resources such as memory and compute cores. This enables efficient and secure
multi-tenant usage and flexible resource allocation, which are ideal for environments requiring strict resource isolation.
The following section will present a discussion of works employing spatial sharing technologies, with the exception of
MIG and MPS.

Dynamic fine-grained allocation: Dynamic fine-Grained allocation [26, 44, 103, 132] is a method that dynamically
allocates hardware resources at a very granular level to different tasks based on their immediate needs and workload
characteristics as show in Figure 4c. This approach involves continuously monitoring the resource demands of tasks
and adjusting allocations in real-time to ensure optimal utilization. For instance, specific parts of a processing unit such

Manuscript submitted to ACM

573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624

12 Huang et al.

Task B arrived

GPU Task A Task B Task C GPU TaskEA Task Bi Task C Task A Task C ...>
T T T Task A arrived é Task C:arrived
1/4GPU 1/4 GPU 1/2 GPU Time -
(a) Spatial sharing (b) Temporal sharing
Task A | Task B Task C allocated resource
4 ™ corjtainer 1 : —
SM SM SM SM SM SM
physical
SM SM SM sm SM SM S BN
resource
SM SM SM SM SM SM . .
container 4
\. J
(c) Dynamic fine-grained allocation (d) Resources oversubscription and isolation
Hypervisor VM
Task D
1 | P Workload
6PUO (TskA kB mn) N . Gne

Host

GPU1 Y Queue
([mse (mwe) /N

Driver

GPUO [Task A Task D J /
GPU1 [Task C Task B J (GPU J
(e) Preemption and Migration (f) Virtualization

Fig. 4. Related Concepts of accelerator sharing. Note that these also apply to TPU, NPU and other Al accelerator architectures. (d)
shows that four containers are shared among one node and an isolation environment. Due to oversubscription of resources, these
containers can be allocated more than a quarter of the total resources available on the node.

as individual cores or even cache lines, or segments of memory down to the level of cache blocks or individual memory
pages, can be allocated to different tasks as their requirements change. This allows for efficient resource use without
significant overhead. The primary advantage of this method is its flexibility and responsiveness to changing workloads,
which can lead to improved performance and reduced resource wastage. However, it requires sophisticated monitoring
and allocation mechanisms to function effectively.

Resources oversubscription and isolation: Resources oversubscription and isolation [92, 107, 126], as show in Figure
4d, is a strategy where more virtual resources are allocated to tasks than the actual physical resources available, based
on the observation that not all tasks will use their peak resources simultaneously. This approach can significantly

Manuscript submitted to ACM

625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653

654

656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675

676

On Efficiency, Fairness and Security in Al Accelerator Resource Sharing: A Survey 13

increase resource utilization and overall system throughput. However, to ensure that performance does not degrade
during peak demand, isolation mechanisms are implemented. These mechanisms guarantee that critical tasks have

access to necessary resources when needed, preventing interference from other tasks.

Temporal sharing. Temporal sharing [68, 69], as show in Figure 4b involves the sequential sharing of the same

hardware resource by multiple tasks over different time periods. In this approach, tasks are assigned specific time slices
during which they can use the resource exclusively. Once a task’s time slice is over, the resource is allocated to another
task. This time-multiplexing strategy allows for dynamic adaptation to changing task demands and can enhance overall
resource utilization. However, it can also introduce overhead due to context switching, where the state of a task is saved
and restored repeatedly, potentially affecting execution efficiency.
Preemption and Migration: Figure 4e illustrates the concepts of preemption and migration in GPU task scheduling,
two pivotal strategies used to address resource contention and improve overall system performance. These techniques
are particularly important in handling dynamic and mixed workloads, such as combining real-time inference tasks with
long-running training jobs. By reallocating or redistributing tasks, they ensure that high-priority or latency-sensitive
tasks are given timely access to computational resources, while maintaining overall system efficiency and balance.

Preemption [38, 124] allows Al accelerators to interrupt lower-priority tasks to allocate resources to higher-priority
tasks, such as real-time inference, improving responsiveness and resource efficiency. However, it introduces context
switching overhead and requires sophisticated scheduling.

Migration [104] involves moving tasks between computational units within Al accelerators to balance load, optimize
energy efficiency, and manage thermal conditions. While it enhances resource utilization and performance, it also
introduces latency and complexity in data management.

Virtualization: Virtualization [54, 56, 58, 74], as show in Figure 4f involves creating virtual instances of hardware
resources that can be allocated to tasks as needed. This method abstracts the physical hardware, allowing multiple
tasks to run on the same physical resource as if they each had their own dedicated hardware. Virtualization enables
efficient resource sharing, isolation, and flexibility in resource allocation. It also simplifies the management of resources
by providing a consistent interface regardless of the underlying hardware. Virtualization can improve security and
fault isolation, as tasks running in separate virtual environments are less likely to interfere with each other. However,
virtualization introduces some overhead due to the need for a hypervisor or virtual machine manager to coordinate and

manage the virtual instances.

Spatio-temporal sharing. Spatio-Temporal Sharing [22, 37, 46] combines the principles of both spatial and temporal
sharing to optimize resource utilization in two dimensions. Tasks are allocated to different resources concurrently
(spatial sharing) while also being scheduled to share the same resources at different times (temporal sharing). This hybrid
approach aims to fully exploit the capabilities of modern multi-core and multi-accelerator systems, achieving high
levels of efficiency and performance. While it offers significant benefits in terms of flexibility and resource optimization,
it also demands more complex and sophisticated scheduling algorithms to manage the dual dimensions of sharing

effectively.

3 EFFICIENCY-ORIENTED Al ACCELERATOR SHARING

As highlighted in Figure 2, this section focuses on efficiency as a central goal in resource sharing for Al accelerators,
emphasizing key metrics such as time, latency, throughput, and cost. Efficiency is a crucial objective in scheduling

optimization, particularly for Al accelerators, where different aspects, including time, cost, and system throughput,
Manuscript submitted to ACM

677
678
679
680
681
682
683
684
685
686
687
688
689

690

692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728

14 Huang et al.
Table 3. Summary of Studies on Efficiency-oriented Sharing under DL Training Workloads
Year Name Obj. Approaches Claimed Effect Dev. Exp.T Exp.S Code
2024 Parcae[29] * Profiling and Predicting Better System robustness;Throughput 10x T G R 32 V100
TGS[117] Iy Dynamic Fine-grained Allocation Throughput 15x T G R 2 A100
Layer-Puzzle[34] Iy Profiling and Predicting PE Utilization 1.95x 1 N s SCALE-Sim
2023 V10[124] axd Fine-grained Precmption NPU Uﬁ“Za“"{‘;t:r:‘:ytfg}ﬁ‘:’fghp“‘ 157x T N s
Flexer([82] + Out-of-Order Scheduling JCT2.2x | N R 8 NPU
DM-NPU[21] ax Dynamic Fine-grained Allocation Throughput 10.8-27.8%1:PE Utilization 2.68xT N S
MAGMA[55] *4 Dynamic Fine-grained Allocation Throughput 1.4-1.6x T A R 6 Accelerator
Muri[143] e Dynamic Fine-grained Allocation JCT 3.6x | ;Makespan 1.6x T G R 64 V100
Synergy[83] ‘e Profiling and Predicting JCT 3.4x | G R 32 V100
DISC[69]) Time Slicing JCT 1.15x |;Accuracy 1.58x T G R 15 GPU
2022 NeiDty[28] 3 Dynamic Fine-grained Allocation JCT 10% | G S Gem5-GPU
Miso[62] * Prediction and Dynamic Partitioning JCT 16-49% | G R 8 A100
Arria 10
Arax[91] . Dynamic Migration JCT 20% | G&F R RX550X
RTX 2080Ti
Zico[67] ak Dynamic Fine-grained Allocation Throughput 1.6-8.3x T G R V100;2080Ti
2021 OM][33] L3 Profiling and Predicting 125-150% Memory Oversubscription G S GPGPU-Sim
Layerweaver[88] [39 Dynamic Fine-grained Allocation NPU Utilization 44% T;Throughput 60.1% T N S MAESTRO[90]
TVT[54] £ Tensor Virtualization Reduce DRAM writes 2x N S -
2020 Salus[132] * Dynamic Fine-grained Allocation JCT 3.19x [;GPU Utilization 2.38x 1 G R 2P100
CPPE[133] + Predict and Oversubscription JCT 1.56-1.64x | G S Gem5-GPU
SIGMA[95] Dynamic Fine-grained Allocation Utilization 3-5.7x T A R SIGMA Engine
2018 MASK[9] *¥ Low-overhead Virtual Memory Throughput 58.7% 1;Unfairness 22.4% | G S Mosaic
Gandiva[118] b Dynamic Migration GPU Utilization 26% T G R 180 P100&P40

Obj.(Objectives): *(Throughput) #(Utilization) #(Latency) ¢(Job Completion Time) ¥Y(Fairness)

N(NPU) F(FPGA) A(ASIC)

Exp.T(Experiment Type): R(Real Cluster) S(Simulation)

physical cluster. -:not clearly specified

Dev.(Device Type): G(GPU)

Exp.S(Experiment Scales): the scale of

must be considered. Due to the distinct characteristics of training and inference workloads, the section categorizes
these workloads to discuss their efficiency strategies. Training optimization focuses on reducing time while maximizing
throughput, whereas inference prioritizes low latency and high throughput. Additionally, mixed-use scenarios where

training and inference coexist are examined, with an analysis of the associated trade-offs and synergies.

3.1 Efficiency of Training

The efficiency of Al accelerator sharing technology has significant implications for training workloads. As outlined in
Sec 2.2.1, we categorize these works focusing on training workloads by time and throughput. Training time is a critical
metric in machine learning as it directly impacts the speed at which models can be developed and deployed. Faster
training times mean quicker iterations and faster turnaround from model conception to implementation. Throughput
measures the number of tasks or operations completed in a given period. Higher throughput indicates a system’s
capability to process more data or train more models simultaneously. At the conclusion of this section, we will present

insights gleaned from these works. A summary of these works is provided in Table 3.

3.1.1 Execution Time. The concept of time efficiency is defined in Sec 2.2.1. One of the most effective methods for
enhancing time efficiency is to share computing and memory resources. With regard to the GPU computing resources,
Synergy [83] emphasizes scheduling and sharing various types of computational resources (such as GPUs, FPGAs, and
TPUs) in a multi-tenant cluster environment. It utilizes a new near-optimal online algorithm to perform multi-resource,

workload-aware assignments. DISC [69] only focuses on GPU time sharing to optimize hyperparameter tuning processes.
Manuscript submitted to ACM

729
730
731
732
733
734
735
736
737
738
739
740

759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779

780

On Efficiency, Fairness and Security in Al Accelerator Resource Sharing: A Survey 15

It leverages dynamic priority scheduling and real-time load monitoring to improve resource utilization. Unlike the
time-share mechanism, Salus [132] introduces fine-grained GPU sharing mechanisms that support concurrent execution
of multiple deep learning tasks on the same GPU. It emphasizes fine-grained resource allocation, concurrent execution,
and resource isolation. Muri [143] considers optimizing overall training efficiency by interleaving multiple types of
computational resources (CPU, GPU, memory, storage). It emphasizes multi-resource interleaving, resource partitioning,
and dynamic resource scheduling. Gandiva’s [118] Key methodologies encompass time-slicing GPUs across multiple jobs
for the purpose of low-latency feedback, dynamic migration to improve locality and efficiency, and adaptive resource
allocation through packing and grow-shrink mechanisms. This approach enhances early feedback, increases cluster
utilization by 26%, and accelerates hyper-parameter searches, achieving up to a 10x speedup in certain tasks. Miso [62]
leverages performance prediction to dynamically allocate NVIDIA Multi-Instance GPU (MIG) resources, optimizing
workload placement and ensuring fairness in multi-tenant GPU clusters. Arax [91] is a runtime framework that
decouples applications from heterogeneous accelerators, enabling dynamic task mapping, efficient accelerator sharing,
and elastic resource allocation, while providing a simple API for transparent and adaptable accelerator utilization. All
these methods use sharing of computing power to improve time efficiency.

From the perspective of GPU memory resources, several perspectives can be optimized, a multitude of potential
avenues exist for optimization, encompassing Translation Lookaside Buffer (TLB) sharing, inter-GPU and inter-host
memory sharing, and memory oversubscription. NeiDty [28] reduces translation latency and improves GPU performance
by sharing address translation results between different TLBs. CPPE [133] presents a coordinated page prefetch and
eviction mechanism for managing memory oversubscription in GPUs.

Flexer [82] introduces an out-of-order scheduling mechanism in NPU that allows tasks to execute out of their
submission order. This strategy dynamically adjusts the execution order of tasks based on their dependencies and
resource requirements. MAGMA [55] proposes an optimization framework that uses intelligent algorithms to map
multiple deep neural network (DNN) tasks onto multiple accelerator cores. DM-NPU [21] present Dataflow Mirroring
technical, which involves replicating data flows to allow shared data paths among multiple tasks and enables fine-grained
spatial multitasking on systolic-array NPUs by optimizing data flow control. TVT [54] focuses on CNN Accelerators

and it proposes Tensor Virtualization abstracts tensor data into virtual tensors, optimizing data storage.

3.1.2 System throughput. Higher system throughput will make the AI accelerator full occupied to increases the
utilization, reflecting the overall efficiency and processing capacity of the system.

Prediction and profiling are critical approaches to increase training throughput. Parcae [29] employs an availability
predictor to forecast future instance preemptions. By predicting which instances are likely to be preempted in advance,
the system can proactively adjust and minimize the impact of preemption. Similarly, OM [33] leverages the output
of a transformer model to accurately perform prefetching and pre-eviction by monitoring and predicting memory
usage. TGS [117] overcomes the limitations of native Kubernetes by intercepting each Docker’s kernel commits. TGS
maintains high GPU utilization through continuous monitoring and adaptive kernel rate control.

An effective methodology for memory sharing will serve to decrease the latency associated with memory access.
MASK [9] redesigns the GPU memory hierarchy, including cache, TLBs, and page table, and monitors the demand
of each application to allocate appropriate memory capacity and enable fast recovery of idle memory. Mean while it
improves the cache coherency protocol to ensure fast synchronisation when multiple applications access the same data,
reducing conflicts caused by inconsistent data. Unlike MASK [9] involves modifications to the GPU memory hardware
architecture, SMM [125] focuses primarily on the software level. It allows multiple thread blocks to share the same

Manuscript submitted to ACM

781
782
783
784
785
786
787
788
789
790
791

792

794
795
796
797
798
799
800
801
802
803

804

806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

826
827
828
829
830
831
832

16 Huang et al.

shared memory region simultaneously. Meanwhile, it interleaves memory data into different memory banks so that
thread blocks accessing memory concurrently can operate on different memory banks. Zico [67] proposes a shared
memory pool and uses an on-demand memory allocation mechanism to optimize memory management.

In the context of NPUs or other accelerator, researchers often share resources at the layer level to increase utilization.
Layerweaver [88] dynamically adjusts the execution order of layers by analyzing the different computational require-
ments and dependencies of each neural network layer. Layer-Puzzle [34] leverages layer heterogeneity and fine-grained
task division to allocate different computing tasks to the most suitable NPU cores. The most advanced approach,
V10 [124], employs preemptive multi-tasking, enabling time-sharing of an NPU core by preempting workloads at the
task level. V10 uses preemption to balance the utilization between the Systolic Array and the Vector Unit, addressing
operator imbalances and enhancing overall efficiency. SIGMA [95], an ASIC chip, employs flexible interconnects and
distributed dataflow to enable efficient sharing of compute and memory resources, optimizing sparse and irregular

GEMM operations for diverse deep learning workloads.

3.2 Efficiency of Inference

Training involves iterative, computationally intensive tasks where reducing training time and maximizing throughput
are crucial, achieved through optimized resource utilization and parallel processing. In contrast, inference focuses on
real-time or near-real-time predictions, where low latency and high throughput are paramount. Latency is the time
taken for an inference request to be processed from input to output. Low latency is crucial for real-time applications
such as autonomous driving, online recommendations, and interactive Al systems, where delays can impact user
experience and system effectiveness. High throughput is important for applications that need to handle a large volume
of requests simultaneously, such as cloud-based Al services and large-scale deployment scenarios. These works are
classified according to their impact on the efficiency of inference workloads, with a focus on latency and throughput,
as outlined in Sec 2.2.2. The exclusion of energy is justified by the fact that it is not the most prevalent factor in the

sharing of technologies. Table 4 provides a detailed overview of these works.

3.2.1 Latency. Latency is the time delay between the input being provided to the system and the output (or result)
being received.

Monitoring are the most common methods for improving efficiency in inference workloads. Gost [134] employs a
monitoring system to track both spatial and temporal utilization of GPU resources, thereby enabling adaptive resource
allocation for network function virtualization. In addition, the monitoring system in SPLIT [75] focuses on tracking
the performance and resource usage of individual chunks, ensuring that Quality of Service (QoS) requirements are
met. It uses a different strategy by splitting DNN models into equally sized chunks and scheduling these chunks for
inference. H3M [135] introduces a coordinated FPGA framework that integrates heterogeneous sub-accelerators, layer-
wise scheduling, and dynamic mapping strategies, leveraging real-time workload monitoring to optimize multi-DNN
execution, achieving up to 7.5 Energy-Delay Product (EDP) reduction compared to state-of-the-art accelerators.

Different from monitoring, PREMA [23] introduces a predictive scheduling algorithm for NPUs that supports
preemption, which make it suitable for environments where tasks have varying execution times and need to be
managed dynamically to optimize performance. In contrast, Baymax [14] optimizes non-preemptive accelerators by
focusing on QoS. This involves predicting the duration and resource requirements of tasks to avoid conflicts due to
the non-preemptive nature. In addition, it addresses queueing delays for computational resources by implementing a
runtime system that orchestrates the execution of computing tasks from different applications. DGSF [32] introduces a

Manuscript submitted to ACM

833
834
835
836
837
838
839
840
841
842
843
844

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874

876
877
878
879
880
881
882
883
884

On Efficiency, Fairness and Security in Al Accelerator Resource Sharing: A Survey 17
Table 4. Summary of Studies on Efficiency-oriented Sharing under DL Inference Workloads
Year Name Obj. Approaches Claimed Effect Dev. Exp.T Exp.S Code
Llumnix[104] * Preemption and Migration latency 1.5x |;Cost 36% |, G R 16 Nvdia A10
2024 VFPGA _layer[81] * Virtualization Throughput 2.31-3.96x T F R Alveo U250
ParvaGPU[60] Lt Dynamic Fine-grained Allocation GPU Usage 12.5% | with No SLO Violations G R 8 A100
Gost[134] £33 Profiling and Predicting Minimize the End-to-End Latency G R 12080
FaST-GShare[37] *4 Spatio-temporal Sharing Throughput 3.15x T;GPU utilization 1.34x T G R 4 V100
2023 SPLIT[75] * Profiling and Predicting Latency Violation Rate 43% | Jitter 69.3% | G R Jetson Nano
KRISP([24] * Profiling and Predicting Throughput 2x :Energy 33% |, G R AMD MI50 GPU
H3M[135] » Dynamic Fine-grained Allocation Energy-Delay-Product 3.6-7.5x | F R Xilinx U200; U280
Gpulet[22] * Spatio-temporal Sharing Throughput 61.7% T G R 4 2080Ti
2022 REEF([38] * Preemption Preemption Latency12.3x | Throughput7.7xT G R AMD MI50 GPU
DGSF[32] o Virtualization Latency 53% |; GPU Utilization 16% T G R 8V100
PREMA[23] Gk Profiling and Predicting SLA Satisfaction 4.8x T;Latency 1.4x | N S
2020 Optimus(76] * Spatio-temporal Sharing Throughput 1.98-7x T F R Intel HARP
GSLICE[26] * 4 Dynamic Fine-grained Allocation GPU Utilization 1.6-9x T;Throughput 2-13x T G R 1 V100
2019 ETC[63] ax Preemption GPU Memory Utilization 60-270% 1 G S Mosaic
2018 TSM[46] * Temporal and Spatial Multiplexing GPU utilization 5x T G R 1V100
gScale[123] * Dynamic Fine-grained Allocation Virtual GPU 5x in Linux;4x in Windows G R -
Baymax[14] s Profiling and Predicting 99%-ile Latancy 195x |:Utilization 91.3% T G R Nvidia K40
2016 EIE[39] * ‘Weight Share Throughput 2.9xT:Energy 19xT to [17] A S
Cambricon-X[140] L3 Dynamic Fine-grained Allocation Latency 1.9-4.3x |, A S

Obj.(Objectives): *(Throughput) #(Utilization) #(Latency) §(SLA: Service Level Agreements) Dev.(Device Type): G(GPU)
N(NPU) F(FPGA) A(ASIC) Exp.T(Experiment Type): R(Real Cluster) S(Simulation) Exp.S(Experiment Scales): the scale of
physical cluster. -:not clearly specified. ~ Service Level Agreement: It is a commitment between a service provider and a client that
defines specific performance metrics, such as response time, throughput, and availability, which the service must meet.

disaggregated GPU resource-sharing framework for serverless functions, enabling efficient and low-latency inference
by dynamically allocating and consolidating GPU resources across multiple functions using a virtualized GPU pool.
Cambricon-X [140] leverages a PE-based architecture with efficient indexing and asynchronous processing to optimize

computation and memory handling for sparse neural networks.

3.2.2 System throughput. KRISP [24] and GSLICE [26] both employ spatial partitioning to divide GPU resources
among multiple tasks. However, there are key differences between them. KRISP [24] uses predictive models to forecast
the resource needs of each kernel and dynamically adjusts the resources allocated to each kernel based on real-time
requirements. This approach allows KRISP to operate at the kernel level, focusing on the specific needs of individual
kernels within DNN models. GSLICE [26], on the other hand, employs both static and dynamic partitioning of GPU
resources. This ensures that tasks do not interfere with each other by managing the allocation of GPU partitions
at the task level. However, KRISP’s fine-grained, kernel-level resource allocation contrasts with GSLICE’s task-level
management, highlighting their different approaches to achieving similar goals. vVFPGA _layer [81] proposes a full-stack
solution for enabling multi-tenancy on FPGAs, featuring an intra-FPGA virtualization layer, memory segmentation,
and a network-on-chip architecture, achieving up to 3.96x throughput improvement in isolated settings while ensuring
secure resource sharing and high-quality service.

Gpulet [22] and FaST-GShare [37] both utilize spatio-temporal sharing technologies to optimize GPU usage, but they
cater to different environments. While the former is geared towards multi-GPU servers with a focus on heterogeneous
models, the latter is designed for the flexibility and scalability requirements of serverless computing environments.
Optimus [76] introduces a hypervisor for shared-memory FPGA platforms, enabling secure and efficient resource
sharing through spatial and temporal multiplexing, with key techniques like page table slicing for DMA isolation, a

Manuscript submitted to ACM

885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935

936

18 Huang et al.

multiplexer tree for interconnect management, and a preemption interface for workload flexibility. Furthermore, TSM
[46] integrates both spatial and temporal aspects into scheduling. It introduces dynamic query batching, which groups
multiple execution kernels from disjoint DNN graphs into larger super-kernels. This approach allows for the scalable
execution of hundreds of models on a single GPU by leveraging CUDA streams and inter-model batching, thereby
optimizing both latency and throughput.

Besides spatial and temporal sharing, gScale [123] introduces two innovative mechanisms: the Private Shadow
Graphics Translation Table (GTT) and Ladder Mapping with Fence Memory Space Pool. These mechanisms allow the
GPU to access physical memory directly, effectively bypassing global graphics memory constraints. ETC [63] presents
three key technologies: eviction, throttling, and compression. Eviction involves proactively removing less critical data
from GPU memory to free up space for more urgent data. Throttling controls the rate at which data is processed to
prevent memory overload. Compression reduces the size of data stored in GPU memory, maximizing the available space
and improving overall efficiency. REEF [38] takes two steps to improve throughput, which are reset-based preemption
and dynamic kernel padding. The preemption mechanism allows tasks to be interrupted and resumed with minimal
delay, facilitating concurrent execution. The dynamic kernel padding enhances the ability to handle multiple concurrent
DNN tasks on a single GPU. EIE [39] presents a specialized inference engine that has been optimized for the operation

of compressed deep neural networks. This engine leverages the concept of weight sparsity and on-chip processing.

3.3 Efficiency of Mixed Workloads

Sharing Al accelerators for mixed workloads presents several challenges due to the differing characteristics and
requirements of training and inference tasks. The key difficulties lie in balancing the conflicting demands for resources
between training and inference tasks, dynamically managing workload variations, maintaining low latency for inference,
optimizing overall efficiency, and handling the added infrastructure complexities and overheads. This section categorizes
approaches for both training and inference workloads based on three factors: time, cost, and throughput. Table 5 provides

a comprehensive overview of the detailed information presented.

3.3.1 Execution Time. Since training and inference tasks have different resource requirements and execution times, the
scheduling system must adapt in real-time to these changes to maintain high time efficiency. Sparse-DySta [31] effectively
recognizes and exploits sparsity in DNN workloads to minimize unnecessary computations, thereby accelerating task
execution. Conversely, IGS-TLB [44] concentrates on hardware-level optimizations, specifically TLBs sharing. Although
it does not directly address scheduling algorithms, it enhances time efficiency by reducing memory operation latency.
DeepBoot [20] designs adaptive task scaling(ATS) algorithm to utilize idle GPUs in the inference cluster for the training
DLTs and implements auto-fast elastic(AFE) to reduce the restart overhead by inference GPU reclaiming.

RealArch [114] includes estimation models that predict the execution time and resource requirements for different
DNN tasks. And then its real-time scheduling algorithm, which prioritizes tasks based on their deadlines and resource
needs, dynamically maps tasks to the available cores, balancing the load and reducing contention. OaSM [7] present a
overlap-and-save method which reduces redundant calculations by dividing the input data into overlapping segments,
processing each segment separately, and then combining the results. The approach leverages the fast shared memory
available on GPUs to store intermediate data. AVEC [56] framework virtualizes GPU resources by intercepting API
calls from applications and redirecting them to remote GPU accelerators. This allows lightweight devices to offload
computationally intensive tasks to more powerful GPUs located either in the cloud or at the edge. The use of containers
ensures that applications can be easily migrated and managed across different nodes in the network.

Manuscript submitted to ACM

937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954

955

957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987

988

On Efficiency, Fairness and Security in Al Accelerator Resource Sharing: A Survey 19
Table 5. Summary of Studies on Efficiency-oriented Sharing under DL Mix Workloads
Year Name Obj. Approaches Claimed Effect Dev. Exp.T Exp.S Code
FGD[116] ax Dynamic Fine-grained Allocati Unallocated by F ion 49% | G s 6.2k GPU
HRP[99] * Dynamic Fine-grained Allocation Throughput 1.87x T G R 1 A100
AuRORA[58] *¥ Virtualization SLA Satisfaction 2.02x T;Throughput 1.33x 1 G R
2023 IGS-TLB[44] * Dynamic Fine-grained Allocation L1 TLBs Hit Rate 18% T G N Gem5-GPU
Sparse-DySta[31] * Dynamic Fine-grained Allocation Latency Violation Rate 10% | G R RTX 2080
AVEC[56] ax Accelerator Virtualization Latency 7x | G R 3GPU
RealArch[114] 'Y Profiling and Predicting Latency 2.16-8.54x | N R
FPGAPooling[144] . Dynamic FPGA allocation AvgJCT 7x |; Tail JCT 4x | F R&S XZ 7?‘):;‘;’(‘"
2022 gOver[126] * Dynamic Oversubscription Cost 20% |, G R Intel NUC Kit
DeepBoot[20] 3 Dynamic Fine-grained Allocation JCT 32-38% | G R&S 8 Nvidia P40
MIG-serving[106] * Dynamic Fine-grained Allocation Save 40% GPU G R&S 24 A100
2021 Gemini[12] * Profiling and Predicting Performance Overhead Less than 5% G R 1V100
CPSpatial[48] * Preemption Preemption Latency 87.3% |Throughput 1.43x G R AMD Radeon VII
KubeShare[129] ax Dynamic Fine-grained Allocation Throughput 2x T G R 32v100
AntMan[119] . Dynamic Fine-grained Allocation GPU Memory Utilization 42% T;Computation Utilization 34%] G R 64 V100 GPU
2020 AvA[131] o~ Virtualization Virtualize 9 Accelerators and 11 Framework APIs G R 4 GPU
PERSEUS[61] * Dynamic Fine-grained Allocation Cost 12% | G s Nvidia TensorRT
0AS[7] Y Dynamic Fine-grained Allocation Improve Memory Share G R P100, P4, TitanV
s01s FELIPE[142] * Virtualization Throughput 19.7-21.5% T G R 2GPU
G-NET[139] *& Dynamic Fine-grained Allocation Throughput 70.8% T;Latency 44.3% | G R TITAN X
2017 Maestro[90] * Dynamic Fine-grained Allocation Throughput 12.9-20.2% T G S GPGPU-Sim
s016 VDNN[98] Iy Memory virtualization Reduce GPU Memory Usage 89-95% | G R Titan X
Eyeriss[18] * Row-Stationary (RS) Dataflow Energy Consumption per Operation 1.4-2.5x | A s -

Obj.(Objectives): *(Throughput) #(Utilization) #(Latency) ¢(Job Completion Time) %*(Cost) ¥Y(Fairness)%(Interference)
Exp.T(Experiment Type): R(Real Cluster) S(Simulation)
Exp.S(Experiment Scales): the scale of physical cluster. -:not clearly specified

Dev.(Device Type): G(GPU) N(NPU) F(FPGA) A(ASIC)

In addition to GPU-related work, the sharing of certain accelerators (e.g., FPGA, ASIC) has also been demonstrated

to accelerate Al workloads. FPGAPooling [144] introduces a centralized FPGA resource pooling framework that

dynamically allocates and shares FPGA accelerators among multiple tenants, addressing the inefficiency of static

allocation in cloud environments. FPGAPooling improves the average and tail job completion time by up to 7 and 4

times, respectively.

3.3.2 Cost. The objective of cost-effective scheduling of mixed deep learning workloads is to achieve a balance between
performance and cost. A number of recent studies use dynamic scaling and resource allocation technologies that adjust
to real-time demand, with the aim of enhancing cost efficiency. GOver [126] introduce an economy-oriented approach
to GPU virtualization, which leverages dynamic and adaptive oversubscription. AntMan [119] automatically scales
GPU resources up or down based on real-time workload demands. Concurrently, it incorporates cost-awareness in
scaling decisions, thereby reducing unnecessary expenditures on GPU resources during low-demand periods. FGD [116]
presents Fragmentation Gradient Descent as a method for the management and reduction of memory fragmentation in
GPU-sharing workloads. Eyeriss [18] leverages a row-stationary dataflow to optimize energy efficiency in convolutional
neural networks by minimizing data movement and maximizing local data reuse on a spatial architecture.

The majority of these alternative approaches concentrate on enhancing the efficacy of GPU virtualization, minimizing
overheads, and optimizing resource allocation to reduce costs. AvA [131] implements technologies to reduce the overhead
associated with GPU virtualization and Uses hardware-assisted virtualization and optimized software stacks to achieve
lower latency and higher throughput. Unlike that, vDNN [98] virtualizes deep neural networks to achieve scalable and
memory-efficient neural network design.

Manuscript submitted to ACM

989

990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040

20 Huang et al.

Beside these works, numerous research studies implement adaptive scheduling strategies that optimize resource
utilization and cost based on workload characteristics. MIG-serving [106] employs a dynamic reconfiguration of GPU
instances based on current workload, avoiding over-provisioning and reducing costs. PERSEUS [61] analyzes the
trade-offs between performance and cost in multi-tenant environments and implements scheduling strategies that

consider the specific needs and costs of different tenants.

3.3.3 System throughput. A number of studies concentrate on the administration of GPU resources in multi-tenant
settings. AuURORA [58] employs virtualization technologies to abstract physical accelerator resources into Virtual
Accelerator Instances (VAIs), which can be allocated to different tenants as needed. Concurrently, it continuously
monitors the usage of each virtual accelerator instance and adjusts resources according to load changes. Gemini
[12] detects and characterizes the burstiness of GPU workloads by analyzing their execution patterns. This helps in
understanding how workloads can be interleaved without causing significant performance degradation. The system
ensures that high-priority or bursty workloads receive sufficient resources while allowing low-priority or less bursty
workloads to utilize the remaining capacity. KubeShare [129] includes a GPU device plugin for Kubernetes, which
abstracts the physical GPUs into logical GPU slices. The mechanism allows GPUs to be divided into smaller, shareable
units (slices) that can be allocated to different containers based on their requisite specifications.

A significant body of literature emphasizes the importance of dynamically adjusting resource allocation to meet the
needs of different tasks. HRP [99] divides GPU resources into multiple hierarchical levels, each representing different
granularity of resource partitions. Furthermore, a reinforcement learning model is employed to facilitate dynamic
adjustments in resource allocation at each hierarchical level. The reinforcement learning model continuously optimizes
resource allocation strategies by observing task performance and feedback. Similarly, G-NET [139] ensures that the
GPU is kept busy by dynamically scheduling GPU kernels from different network functions. The dynamic partitioning
of GPU resources in Maestro [90] entails the continuous monitoring of task performance and resource usage, adapting
resource allocations in real-time based on current demands, and using a feedback loop to refine and optimize allocations.

Simiarly, Fine-grained resource sharing [48, 142] is a common strategy for improving system throughput. In contrast
to CPSpatial [48], which focuses on dividing the GPU into partitions and using preemption to manage task priorities,

FELIPE [142] focuses on creating vGPUs and fine-grained scheduling of these virtual resources.

3.4 Discussion

In summary, optimizing resource-sharing efficiency in Al accelerators involves a variety of methodological approaches,
each achieving varying levels of success. Figure 5 highlights optimization improvements across key metrics, ranging
from 1.2x to 15x. For job completion time (JCT) and latency optimization, solutions such as REEF and ATFM deliver
significant gains of 12.3x and 7x respectively, particularly in inference workloads. In terms of utilization and throughput,
methods like TGLS and GSLICE demonstrate remarkable improvements of up to 15x and 13x. The subsequent discourse

will meticulously examine the most salient points delineated in this section.

Dynamic fine-grained allocation and profiling & predicting are most common approaches for efficient
sharing. As illustrated in Figure 5, the majority of the work utilizes that two approaches to optimize the accelerator.
These methodologies result in enhanced operational efficacy by guaranteeing that tasks are not postponed due to
inadequate resources. The reduction of latency is achieved by ensuring that high-priority tasks are allocated the requisite
computational resources without delay. Furthermore, they contribute to the enhanced efficiency of Al systems by

ensuring that resources are neither underutilized nor overcommitted, thereby maintaining an optimal balance that
Manuscript submitted to ACM

1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091

1092

On Efficiency, Fairness and Security in Al Accelerator Resource Sharing: A Survey

Optimization (Color)
15 4 e CT
= @ latency REEF{12.3)
E " Workload (Shape)
" ¢ Train RealArgy (8.54)
o % Inference
] v Mix ng (7) AVEG(T)
@
3
ES
B
v
f =
2 Cambricop-X (4.3)
s 7
5 4
5 Murigl3.6
G X
= ‘3 Synerw (3.4)
=) Sal .19
: gy 19
Lo 39
=]
Il
N
£
= Fl 22
= exe.()
o 24 CPSpath (1.87)
Misod.49) CPPEg64) VIO@56) Liumny (1.5) DGSF1 53]
DeepBiogt (1.381PREM (1.4) ¢ ¥
NeiDiga(1.1) DIsCg15) Aragl-2)
Out-of-Order Dynamic Profiling Time Prediction Dynamic Predict Fine-Grained Preemption Preemption Virtualization
Scheduling Fine-grained and Slicing and Migration and Preemption and
Allocation Predicting Dynamic Oversubscription Migration
Partitioning
Approaches of Works
(a) JCT and Latency
20
Optimization (Color)
ﬁ 154 TGS {15) Throughput
= GSLIGE (13) Utilization
[}
© 10 Parcae (10) Workload (Shape)
] 1 GSLICE (9 i
V] leco (ES.(.?)) @ Train
2 REEF,(7.7) % Inference
3 Optimus (7) .
x ¥ Mix
= SIGMA (5.7)
5}
2 TSN,(5)
R
g 4 VFPGA_layer (3.96) ETC(3.7)
5 FaST-GShare (3.15)
e 31 EIE (2.9)
3
% Salus(2.38)
] KRISP (2 KubeShare (2)
o 24 Layer:] \(% 5)
";: ggyﬁtﬁ ‘ah? HRP(1.87)
‘s V104 64 G-NET.(1.7)
5 vio {1:57 MAGMA (1.6) Layerweaver (1.6) Gpulet (1.61) Mask (1.58)
=]
[Layerweaver (1.44) CPSpatial (1.43)
£ E)\IUIN\NIIIEG &J].-.;% dia() FaST-GShare (1.34) AURORA (1.33)
b= -| N Gandiva, (1.26
E
8. Maestro (1.2) 5{3?&9%‘))
Fine-grained Profiling Dynamic Dynamic Spatio-temporal Virtualization Preemption Temporal Weight
Preemption ani Fine-grained Migration Sharing an Share
Predicting Allocation Spatial
Multiplexing

Approaches of Works

(b) Utilization and Throughput

21

Fig. 5. Summary of Efficiency Optimization of Metrics. The optimization results for some works are a range interval, and we have
chosen the maximum of the range to show here.

enhances system throughput and responsiveness. This results in a more seamless and dependable operation of Al

services, particularly in environments with dynamic and varied workloads, which aligns more closely with production

environments characterized by large and complex workloads.

Manuscript submitted to ACM

1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143

1144

22 Huang et al.

Inference Workloads Achieve Superior Optimization Compared to Training. The optimization of inference
workloads generally surpasses that of training workloads, as shown in the Figure 5 where inference consistently achieves
higher gains across key metrics. This can be attributed to inference’s more predictable and lightweight computational
patterns, which allow for more effective resource scheduling and management. In contrast, training workloads, often
characterized by higher complexity and variability, show relatively modest improvements, particularly in systems

employing fine-grained resource allocation and dynamic optimization strategies.

NPUs and TPUs have become increasingly popular as Al accelerators for efficient shared environments.
Since 2023, the evolution of chips dedicated to deep learning has accelerated significantly, leading to a surge in research
focused on optimizing the performance of NPUs [34, 82, 124] and TPUs. These processors have a simpler architecture
compared to GPUs, and their openness to a wider range of internal hardware interfaces enables more nuanced resource
sharing. This, in turn, enhances the efficiency of data sharing. As NPU computational capabilities continue to expand, it

is expected that even more researchers will delve into this field, further advancing the technology.

It is very common to consider system throughput as the main objective. This focus on system throughput
aims to maximize the number of tasks processed within a given timeframe, which is crucial for improving the overall
efficiency and performance of Al systems. By prioritizing throughput, researchers can ensure that Al accelerators like
GPUs and TPUs are used to their fullest potential, handling multiple tasks simultaneously and reducing idle times.
This approach not only enhances the productivity of Al systems but also makes them more scalable and responsive
to varying workload demands. As a result, achieving high system throughput is a key goal in optimizing resource

allocation and utilization in shared Al accelerator environments.

Optimizing Efficiency Requires Simultaneous Consideration of User Experience. Optimizing efficiency in GPU
accelerator scheduling requires a careful balance between maximizing resource utilization and maintaining a positive
user experience. While achieving high throughput and low latency is critical for efficiency, it is equally important
to ensure that user-centric metrics, such as responsiveness and fairness, are not compromised. Modern scheduling
algorithms must account for diverse workloads with varying priorities, from real-time inference tasks to large-scale
training jobs. For example, PREMA[23] achieves a 1.4x increase in throughput alongside a 4.8x improvement in SLA
satisfaction, illustrating that it is possible to enhance system performance without compromising service quality.
This underscores the need to consider both efficiency and user experience in scheduling strategies, particularly when
addressing challenges like worst-case latency or percentile guarantees (e.g., P95 or P99 latency), which are critical for

maintaining user satisfaction.

Shared accelerator clusters, not individual devices, are now an efficient way to train LLMs. Shared accelerator
clusters have become a preferred method for training LLMs[50]. By leveraging multiple devices in a distributed setup,
they reduce training time and optimize resource utilization. Techniques like tensor and pipeline parallelism divide
computations across devices, overcoming memory bottlenecks and enabling the training of larger models. Compared to
single devices, shared clusters provide greater scalability and efficiency, making them indispensable for modern Al

workflows.

4 RISING CONCERNS IN Al ACCELERATOR SHARING

As shown in Figure 2, this section delves beyond the realm of efficiency, encompassing critical concerns such as fairness,

interference, and security in the context of Al accelerator resource sharing. It explores the impact of computing and
Manuscript submitted to ACM

1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195

1196

On Efficiency, Fairness and Security in Al Accelerator Resource Sharing: A Survey 23
Table 6. Summary of Studies on Non-Efficiency-Oriented Sharing under DL Workloads
Year Name Obj. Approaches Claimed Effect Dev. Exp.T Exp.S Code
Orion[103] - Dynamic Fine-grained Allocation Throughput 7.3x T;Cost 1.49x | G R 1V100
2024 Guardian([92] A Resources Isolation Overhead Only 4-12% G R Quadro A4000;3080 Ti -
DOTPBA[84] Ae Dynamic OTP Buffer Allocation Excution time 13.2-17.5% | G S MGPUSim -
iGniter[120] % Profiling and Predicting Guarantee the SLOs by Cost 25% | G R 10 V100
2023 Libra([72] % Dynamic Fine-grained Allocation Backward Time 6-20% | G R&S 8V100
IADeep[16] ad Co-Optimizing Task Assignments Utilization29-31%1:JCT49% | ;Makespan67%], G R 20 RTX 3090
ctmGPU[68] o Interleave PCle Channel Accesses JCT 31.8-38.3% | when GPU Memory 1.33-2x G R 8 P40 -
Astraea[111] v Primal-Dual Algorithm;Sharing Rewards Fairness 20% T G s -
2022 VELTAIR[73] L 2] Dynamic Fine-grained Allocation Latency 50% |;Throughput 45-71% T G R -
GDC[10] - Track the Contention Help Desiger Know How APPs are affected G S GPGPU-Sim -
MoCA[57] * W Dynamic Fine-grained Allocation SLA 1.8x T;Throughput 1.7x TFairness 1.2x T G S FireSim -
2021 MAPA[96] *”- Dynamic Fine-grained Allocation 75% JCT 12.4% |;Worst Execution Time 35% | G R&S 1V100
ParSecureML([137] A Parallel Processing Makespan 33.8x | G R 3V100
Themis[77] v Finish-Time Fairness Fairness 2.25x T G R 64 K80 GPU -
2020 Fingerprint[108] A Extracting FPGA Fingerprint Identify Cloud FPGA Instances F R f1.2xlarge;f1.4xlarge
Gandiva_fair[11] A Job Migration and Trading Fair-share in a Heterogeneous Setting G R V100;P100;K80 -
1AVS[121] * Profiling and Predicting Accuracy 15-40% T G R 1 Nvidia P100 -
2019 GAugur[65] o Profiling and Predicting GPU Utilization 20-60% T G R 1RTX 1060 -
£QoS[74] * Adaptive Virtualized Under the QoS Target GPU Utilization 25.85% | under QoS G R Intel HD Graphics 5500 -
VMCG[107] ay Separate V-Channel GPU Allocation Fairness 60-80% T G R 1 GTX 750Ti -
o FREFI[101] A Wide Parametrizable Secret Sharing Core Throughput 6.4Gbit/s F R -
Leaky Wires([35] A Leaky Wires Covert Communication Bandwidth 6kbps F R Virtex -
Graviton[110] A Static Analysis Validation Latency 17-33% | G R GTX 780; GTX Titan -
2017 Prophet[13] o Profiling and Predicting Utilization 49.9%by Prediction Error 5.47% G R Nvidia K40 -
2016 Mystic[109] < Profiling and Predicting Throughput 27.5% T;GPU utilization 16.3% T G R 34 Nvidia K40m -

Obj.(Objectives): *(Throughput) #(Utilization) #(Latency) ¢(Job Completion Time) %*(Cost) ¥Y(Fairness) ==(Interference)

A (Security)

Dev.(Device Type): G(GPU) N(NPU) F(FPGA)

Exp.S(Experiment Scales): the scale of physical cluster. -:not clearly specified

Exp.T(Experiment Type): R(Real Cluster) S(Simulation)

memory bandwidth interference on performance, methodically examines approaches to ensure equitable resource

allocation, and underscores the significance of robust security measures. A synopsis of advancements in the pertinent

literature is enumerated in Table 6.

4.1

Fairness

The concept of fairness in computational resource allocation refers to the equitable distribution of resources among tasks

and users, preventing monopolization. It involves balancing task priorities in multi-tenancy environments, ensuring a

trade-off between latency and throughput, and dynamically adapting to changing workloads and resource availability.

Themis [77] design allocates GPUs to winning bids by trading off fairness for efficiency in the short term, but

ensuring finish-time fairness in the long term, rather than prioritizing one over the other. Astraea [111] employs
incentives to encourage fair resource sharing among tenants. By offering rewards or benefits for efficient resource
sharing, it encourages tenants to cooperate and share GPU resources. VMCG’s [107] approach is to ensure fairness by
allocating dedicated GPU channels to virtual machines. Each VM is allocated its own channel, preventing interference
and ensuring that resources are distributed fairly. Gandiva_fair [11] is a scheduling framework for heterogeneous GPU
clusters that balances efficiency and fairness. It employs dynamic profiling, job migration, and GPU trading mechanisms
to optimize resource allocation across multiple GPU models, improving cluster utilization and performance while
ensuring fair resource distribution among users.

Manuscript submitted to ACM

1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247

1248

24 Huang et al.

4.2 Interference

In the context of accelerator sharing, interference refers to the negative impact on task performance due to competition
for shared resources like memory bandwidth, compute units, and cache. This can lead to increased latency, reduced
throughput, and unpredictable task execution. Addressing interference involves strategies such as resource isolation,
fair scheduling, dynamic resource management, and performance isolation to ensure efficient and predictable task

performance.

4.2.1 Computing. In a GPU, compute units include Streaming Multiprocessors (SMs) with CUDA cores, Tensor Cores,
Ray Tracing Cores (RT Cores), Texture Units, Shader Units, Raster Operations Pipelines (ROPs), Special Function
Units (SFUs), and Load/Store Units (LD/ST Units), all working together for efficient parallel computation and graphics
rendering. Most interference in GPUs typically occurs in the Streaming Multiprocessors (SMs), which house the CUDA
cores. This is where the bulk of parallel computation happens, leading to contention for compute resources.

We can categorize existing approaches in two groups. Firstly, several works focus on predicting and mitigating
interference through real-time monitoring and forecasting, ensuring efficient and predictable resource allocation.
Prophet [13] focuses on predicting Quality of Service (QoS) metrics to improve resource utilization and ensure perfor-
mance compliance in non-preemptive accelerator environments. IAVS [121] aims to predict and manage performance
interference for interference-aware scheduling in virtualized GPU environments. GAugur [65] quantifies performance
interference among colocated gaming workloads to optimize resource utilization in cloud gaming scenarios. Each
approach targets different environments and types of interference, using tailored prediction technologies to enhance
performance and resource management. IGniter [120] ensures predictable DNN inference performance in the cloud
by employing interference-aware GPU resource provisioning, dynamically allocating resources based on predicted
interference levels. IADeep [16] employs a middleware approach that intelligently multiplexes deep learning workloads,
using interference models to predict and mitigate contention. Mystic [109] employs a collaborative filtering framework
to predict the interference caused by incoming applications based on their similarity to currently running applications.
This prediction enables the scheduler to minimize interference and optimize system throughput.

Secondly, many works manage interference by focusing specifically on fine-grained GPU sharing and thread
allocation technologies. Orion [103] provides fine-grained GPU sharing with interference awareness, dynamically
adjusting GPU usage for ML applications by monitoring interference levels and reallocating resources. Libra [72]
introduces contention-aware GPU thread allocation for data parallel training, optimizing thread distribution in high-
speed network environments by assigning threads based on contention metrics. GQoS [74] provides a QoS-oriented
GPU virtualization framework with adaptive capacity sharing, which allows for the dynamic adjustment of resource
allocation according to real-time workload demands to maintain QoS for multiple tenants. MAPA [96] introduces a
multi-accelerator pattern allocation policy that optimizes GPU resource sharing and reduces contention in multi-tenant
GPU servers by identifying and leveraging workload patterns. VELTAIR [73] enhances multi-tenant deep learning
services through adaptive compilation and scheduling, optimizing performance by dynamically adjusting compilation

strategies and scheduling decisions based on current system states.

4.2.2 Memory and Bandwidth. Memory interference occurs when multiple tasks compete for memory resources,
resulting in increased latency, reduced throughput, and unpredictable performance. Mitigation strategies may include
resource partitioning, priority scheduling, dynamic resource management, performance isolation, and effective caching,
with the objective of ensuring efficient and consistent task execution.

Manuscript submitted to ACM

1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299

1300

On Efficiency, Fairness and Security in Al Accelerator Resource Sharing: A Survey 25

GDC [10] is concerned with the real-time tracking and management of cache contention, allowing for more efficient
use of last-level cache resources by identifying and mitigating cache-related performance issues. MoCA [57] introduces
memory-centric, adaptive execution strategies that dynamically adjust memory allocation based on the specific demands
of multi-tenant DNN workloads. G10 [138] integrates GPU memory and storage with smart tensor migrations, creating
a unified architecture that enables efficient data movement and reduces memory access contention. CtmGPU [68]
develops advanced scheduling technologies for tensor movements across multiple GPUs, optimizing the timing and

coordination of data transfers to prevent bottlenecks.

4.3 Security

Security in resource sharing involves protecting sensitive data through encryption and access control, ensuring resource
isolation to prevent interference between tasks, implementing fair scheduling to avoid resource contention, maintaining
network security with protocols and intrusion detection, and preventing side-channel attacks. It ensures that multiple
tasks or tenants can share GPU resources efficiently without compromising data privacy, task performance, or system
integrity.

Guardian [92] is designed to maintain isolation and enforce security policies in multi-tenant GPU environments.
To address the bandwidth issue of additional security metadata, DOTPBA [84] uses a dynamic batching scheme to
transfer only a single set of metadata for each batched group of data responses. The proposed design constantly tracks
the communication pattern of each GPU, periodically adjusts the allocated buffer size, and dynamically forms batches
of data transfers. ParSecureML [137] employs methods such as data parallelism, where large datasets are divided and
processed concurrently across multiple GPU cores, and model parallelism, which splits the machine learning model
itself for parallel execution. Additionally, it incorporates cryptographic protocols like homomorphic encryption and
secure multiparty computation to ensure data privacy and security during processing. Graviton [110] addresses the
need for secure execution on heterogeneous systems, introducing a co-designed hardware-software framework that
ensures kernel isolation and encryption efficiency with minimal performance impact. These combined methods optimize
computational performance while maintaining robust data protection.

In addition to the GPU-related work mentioned above, some research has focused on edge accelerators, such as FPGAs,
to address security challenges. Leaky Wires [35] explores vulnerabilities in FPGA routing resources, revealing how
crosstalk effects in long wires can be exploited for covert communication and proposing mitigation strategies to secure the
routing infrastructure. FREFI [101] designs an optimized FPGA architecture for secure data storage, achieving significant
improvements in throughput and resource efficiency compared to traditional methods. Furthermore, Fingerprint [108]
investigates security risks in cloud FPGA deployments by using Physical Unclonable Functions (PUFs) to identify
unique FPGA instances, highlighting potential threats and suggesting countermeasures to mitigate them. These studies
highlight the unique challenges and solutions for ensuring the security of edge accelerators in distributed computing

environments.

4.4 Discussion

In conclusion, this section analyzes three critical aspects of Al accelerator sharing optimization: fairness, interference,
and security, with various approaches achieving different levels of improvement. Fairness optimization approaches
like Themis achieve up to 2.25x improvement, while interference mitigation solutions such as VELTAIR and IADEEP
demonstrate significant gains of 1.71x and 1.67x respectively. Security-focused solutions like ParSecureML and Guardian

show moderate but stable improvements of 1.33x and 1.12x.
Manuscript submitted to ACM

1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344

1345

26 Huang et al.

The optimization techniques can be categorized by their primary objectives: fairness-oriented solutions (Themis,
VMCG, Astraea) focus on equitable resource allocation with improvements ranging from 1.2x to 2.25x; interference-
focused approaches (IAVS, Prophet, Mystic) address resource contention with enhancements from 1.25x to 1.6x; and
security-centered solutions (ParSecureML, Guardian, DOTPBA) prioritize protected execution with improvements from
1.12x to 1.33x.

Balancing Competition and Security is a Challenge in AI Accelerator Resource Sharing. Balancing competition
and security in Al accelerator resource sharing is a complex challenge that requires careful consideration of trade-offs.
Competition-oriented methods prioritize efficient resource utilization among tasks or users, often leading to higher
improvement ratios and enhanced system performance. However, these approaches may not adequately address potential
security vulnerabilities. On the other hand, security-focused solutions prioritize protecting the system from threats, such
as unauthorized access or data breaches, but the additional overhead of implementing these protective mechanisms often
results in more modest performance gains. This inherent trade-off highlights the difficulty of designing systems that
can effectively meet diverse optimization goals, requiring innovative strategies to strike a balance between competitive

resource allocation and robust system security.

Fairness should be achieved through isolation. The concept of scheduling fairness can be interpreted from two
distinct perspectives [27]. From the scheduler’s perspective, fairness implies an even allocation of resources to each
task, thereby maximizing the overall utilization of resources. Conversely, from the users’ perspective, fairness entails
that the resources requested by the users will be honored, even if they are unable to fully utilize the majority of the
requested resources within a given time slot. This results in a situation where the scheduler must observe some tasks
experiencing difficulties in executing their instructions while simultaneously expending resources on idle tasks to
ensure the desired level of fairness to the users.

These two perspectives, which are contradictory, must be reconciled through competitive isolation. When some tasks
have more free resources, the scheduler allocates these resources to other tasks that require them more urgently or have
been waiting for an extended period, thus achieving the scheduler’s fairness. Consequently, when the load of these free
tasks suddenly increases, the scheduler must employ robust resource isolation to reclaim the resources and maintain
user-level fairness. The crux of this coordination lies in the efficacy of the resource isolation policy. It is our contention
that future research on these two factors—competitive isolation and resource allocation—will prove mutually beneficial.
By enhancing the mechanisms for dynamic resource allocation and isolation, it is possible to achieve a balance that
satisfies both the scheduler’s and users’ perspectives of fairness, thereby optimizing overall system performance and

user satisfaction.

Memory security will be the important issue for LLMs. Efficient memory usage is critical for LLMs due to their
size and computational demands. Memory sharing techniques significantly enhance throughput and scalability by
reducing redundancy and improving hardware utilization. Examples include weight sharing, activation reuse, and
memory pooling, which collectively lower costs and increase efficiency.

However, shared memory poses privacy risks, such as data leakage, timing side-channel attacks, and residual data
exposure. Ensuring user isolation in memory sharing involves techniques like memory partitioning, encryption, data

sanitization, and access controls.

Manuscript submitted to ACM

1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

1404

On Efficiency, Fairness and Security in Al Accelerator Resource Sharing: A Survey 27

Balancing memory efficiency and privacy is key to optimizing LLMs. Future efforts should focus on dynamic memory
management, hardware support for secure memory, and minimizing cross-user interference to achieve scalable and

secure LLM deployments.

Normal LLM inference request will be disrupted by a long-text request. With the rapid advancement of LLMs,
long-text inference requests have become increasingly common. These requests demand higher computational and
memory resources and take longer to complete. The growing volume of long-text requests inevitably leads to resource
contention with regular requests that have strict latency requirements. This issue has drawn significant attention from
researchers [94], who are now employing efficient scheduling techniques to manage long-text requests and enhance

overall cluster efficiency.

5 OPEN CHALLENGES

This section will present a discussion of existing challenges that have not been considered in the papers included in this

survey, as well as potential future directions for research in this area.

5.1 SLA-aware Resource Sharing and Job Packing

The optimization of efficiency represents a fundamental objective in the context of sharing technologies. Most sharing
algorithms are designed to optimize various aspects of efficiency. The initial step is to define efficiency. Traditionally,
these algorithms use system metrics, such as utilization, to assess efficiency. However, we believe this approach is
insufficient for measuring the efficiency of an application. A more appropriate method would be to employ user-level
metrics, such as latency, to assess the effectiveness of the application from the user’s perspective. Due to privacy and
security concerns, the system scheduler is unable to obtain user-level metrics. This makes mapping an application’s
SLA (Service Level Agreement) or user metrics using system metrics a significant challenge. UFO [93] addresses this by
employing a scheduling frequency-based approach to map application latency. This involves adjusting CPU allocation
based on predicted scheduling frequency. In the future, selecting an appropriate model with a limited set of system
metrics to gauge an application’s SLA on a GPU will likely gain considerable attention.

To address these challenges, future research should focus on leveraging machine learning models to bridge the gap
between system-level metrics and user-level performance indicators. By training lightweight models on system data
such as GPU utilization, memory bandwidth, and scheduling frequency, it is possible to predict user-level metrics like

latency or SLA compliance.

5.2 Resource Sharing over Heterogeneous Accelerators

Modern data centers and edge Al systems deploy a diverse range of Al accelerators with varying computational
capabilities. These accelerators can range from highly advanced to relatively limited, with some featuring opaque
internal mechanisms and others operating transparently. Resource allocation also differs widely, from fine-grained
control to coarse-grained levels constrained by virtualization techniques.

This heterogeneity necessitates a unified sharing framework to optimize resource use across both data center and
edge accelerators. Such a framework should integrate sharing technologies tailored to the unique attributes of each

device, enabling efficient utilization and boosting overall system performance.

Manuscript submitted to ACM

1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455

1456

28 Huang et al.

5.3 Coordination of Global Scheduler and Local Schedulers

AT accelerator sharing frequently relies on frequent profiling and prediction methodologies. However, the global
scheduler’s tasks, which include calculating remaining resources, synchronizing information, and selecting suitable
nodes, can introduce significant overhead, particularly under substantial workloads. It is important to note that certain
processes involved in node selection are characterized by high-complexity optimization. The present study posits that
the offloading of certain computations to the local scheduler, including the determination of resource sharing feasibility
and the calculation of the remaining resource capacity after sharing, can alleviate the global scheduler’s burden. This
delegation enables the global scheduler to prioritize its core functions, thereby enhancing the efficiency of the overall
scheduling process.

To address the challenges outlined, a practical approach would be to implement a hierarchical scheduling system
where the local scheduler handles computationally intensive tasks such as resource sharing feasibility and residual
capacity calculations. This design reduces the global scheduler’s workload, allowing it to focus on high-level decision-
making and system-wide synchronization. Additionally, leveraging lightweight machine learning models at the local

level can further optimize resource allocation and enhance scheduling efficiency.

5.4 Resource Contention and User Experience in LLM Workloads

The proliferation of LLMs has led to a surge in the availability of bot chat services for the general public. The response
latency is a key factor in the service experience. While sharing technology can improve the overall system’s resource
use efficiency, it can also, to some extent, affect the user’s experience.

To address this issue, techniques such as fast competition, localization, and resource isolation become exceptionally
important. If the monitoring program identifies an impact on the user experience, it is essential for the program to
respond promptly to prevent the resource quota of the reasoning service from being exceeded or to make predictions

about these scenarios in advance. These factors underscore the significance of detecting resource competition.

5.5 Accelerator Sharing Expands from Device-Level to Cluster-Level

As Al models, particularly large language models (LLMs), grow in size and complexity, individual devices increasingly
fall short of meeting the computational and memory demands of these tasks. This limitation has driven a shift toward
cluster-level sharing, which introduces new challenges. Managing data synchronization across distributed accelerators
becomes significantly more complex, especially for tasks requiring precise coordination in parallel processing. Network
bottlenecks emerge as data transfers between nodes scale, diminishing the efficiency of both training and inference.
Furthermore, maintaining workload fairness and minimizing interference across heterogeneous cluster hardware
necessitate sophisticated scheduling algorithms. Resource fragmentation within clusters adds another layer of complexity,
as underutilized accelerators often coexist with overloaded ones, further complicating resource optimization.

These challenges necessitate the development of robust cluster-level resource management systems that can dynami-

cally allocate, optimize, and monitor resources to maximize performance and scalability.

6 CONCLUSIONS

This survey systematically investigates the latest resource-sharing technologies for Al accelerators. We first present
a statistic view of current research from multiple perspectives. Then we introduce the key concepts and analyze the
performance measures that are greatly impacted by Al accelerator sharing. This also includes an exploration of the

Manuscript submitted to ACM

1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499

1500

1502
1503
1504
1505
1506
1507
1508

On Efficiency, Fairness and Security in Al Accelerator Resource Sharing: A Survey 29

common principles and fundamental techniques adopted in the literature. In particular, We categorize existing studies
by their aim of system optimization with primary focus on efficiency, including time efficiency, cost efficiency, and
system throughput efficiency. Additionally, we examine issues related to fairness, task interference, and the security
implications associated with resource sharing.

Furthermore, we highlight critical open challenges that have not been addressed in existing effort. These challenges
encompass the need for better resource allocation strategies in shared environments. This survey provides a compre-
hensive overview of the state-of-the-art, guiding future research directions and emphasizing the necessity for further

advancements in resource-sharing technologies.

ACKNOWLEDGMENTS

This work is supported by Guangdong Major Project of Basic and Applied Basic Research (2019B030302002), National
Natural Science Foundation of China (62402198), Guangxi Key Research and Development Project(2024AB02018),
Guangzhou Development Zone Science and Technology Project (2023GH02), Fundamental Research Funds for the
Central Universities (21624348), and in part by the Major Key Project of PCL (PCL2023A09).

REFERENCES

2024. Apple’s Neural Engine. https://www.apple.com/newsroom/2024/05/apple-introduces-m4-chip/.
2024. Google Edge TPU. https://cloud.google.com/edge-tpu?hl=zh-cn.

2024. Huawei’s Ascend. https://e.huawei.com/en/products/computing/ascend.

2024. NVIDIA multi-instance GPU. https://www.nvidia.com/en-us/technologies/multi-instance-gpu/.

2024. NVIDIA Multi-process service. https://docs.nvidia.com/deploy/mps/.

Karel Adamek, Sofia Dimoudi, Mike Giles, and Wesley Armour. 2020. GPU Fast Convolution via the Overlap-and-Save Method in Shared Memory.

ACM Trans. Archit. Code Optim. 17, 3, Article 18 (aug 2020), 20 pages.

[8] Hyunho Ahn, Munkyu Lee, Sihoon Seong, Gap-Joo Na, In-Geol Chun, Blesson Varghese, and Cheol-Ho Hong. 2024. ScissionLite: Accelerating
Distributed Deep Learning With Lightweight Data Compression for IIoT. IEEE Transactions on Industrial Informatics (2024).

[9] Rachata Ausavarungnirun, Vance Miller, Joshua Landgraf, Saugata Ghose, Jayneel Gandhi, Adwait Jog, Christopher J. Rossbach, and Onur Mutlu.

Rl

]
]
]
] 2024. NVIDIA Management Library. https://developer.nvidia.com/management-library-nvml.
]
1
]

2018. MASK: Redesigning the GPU Memory Hierarchy to Support Multi-Application Concurrency. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and Operating Systems (Williamsburg, VA, USA) (ASPLOS ’18). Association for
Computing Machinery, New York, NY, USA, 503-518.

[10] Javier Barrera, Leonidas Kosmidis, Hamid Tabani, Jaume Abella, and Francisco J. Cazorla. 2022. Contention Tracking in GPU Last-Level Cache. In
2022 IEEE 40th International Conference on Computer Design (ICCD). 76-79.
[11] Shubham Chaudhary, Ramachandran Ramjee, Muthian Sivathanu, Nipun Kwatra, and Srinidhi Viswanatha. 2020. Balancing efficiency and fairness

in heterogeneous GPU clusters for deep learning. In Proceedings of the Fifteenth European Conference on Computer Systems (Heraklion, Greece)
(EuroSys °20). Association for Computing Machinery, New York, NY, USA, Article 1, 16 pages. https://doi.org/10.1145/3342195.3387555

[12] Hung-Hsin Chen, En-Te Lin, Yu-Min Chou, and Jerry Chou. 2023. Gemini: Enabling Multi-Tenant GPU Sharing Based on Kernel Burst Estimation.
IEEE Transactions on Cloud Computing 11, 1 (2023), 854-867.

[13] Quan Chen, Hailong Yang, Minyi Guo, Ram Srivatsa Kannan, Jason Mars, and Lingjia Tang. 2017. Prophet: Precise QoS Prediction on Non-
Preemptive Accelerators to Improve Utilization in Warehouse-Scale Computers. SIGARCH Comput. Archit. News 45, 1 (apr 2017), 17-32.

[14] Quan Chen, Hailong Yang, Jason Mars, and Lingjia Tang. 2016. Baymax: QoS Awareness and Increased Utilization for Non-Preemptive Accelerators
in Warehouse Scale Computers. In Proceedings of the Twenty-First International Conference on Architectural Support for Programming Languages and
Operating Systems (Atlanta, Georgia, USA) (ASPLOS ’16). Association for Computing Machinery, New York, NY, USA, 681-696.

[15] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen, and Olivier Temam. 2014. Diannao: A small-footprint high-
throughput accelerator for ubiquitous machine-learning. ACM SIGARCH Computer Architecture News 42, 1 (2014), 269-284.

[16] Wenyan Chen, Zizhao Mo, Huanle Xu, Kejiang Ye, and Chengzhong Xu. 2023. Interference-aware Multiplexing for Deep Learning in GPU Clusters:
A Middleware Approach. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC "23).
Association for Computing Machinery, New York, NY, USA, Article 30, 15 pages.

[17] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Ligiang He, Jia Wang, Ling Li, Tianshi Chen, Zhiwei Xu, Ninghui Sun, et al. 2014. Dadiannao: A
machine-learning supercomputer. In 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture. IEEE, 609-622.

Manuscript submitted to ACM

https://www.apple.com/newsroom/2024/05/apple-introduces-m4-chip/
https://cloud.google.com/edge-tpu?hl=zh-cn
https://e.huawei.com/en/products/computing/ascend
https://developer.nvidia.com/management-library-nvml
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://docs.nvidia.com/deploy/mps/
https://doi.org/10.1145/3342195.3387555

1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560

30

(18]

(19]

[20

[21

(22]

~
&

[24

(25]

[26

(27]

[28

(29]

(30]

(31

(32]

(33

(34]

(35

'
&

(37]

(38]

(39]

(40]

(41]

Huang et al.

Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: a spatial architecture for energy-efficient dataflow for convolutional neural networks.
In Proceedings of the 43rd International Symposium on Computer Architecture (Seoul, Republic of Korea) (ISCA ’16). IEEE Press, 367-379. https:
//doi.org/10.1109/ISCA.2016.40

Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. 2019. Eyeriss v2: A flexible accelerator for emerging deep neural networks on mobile
devices. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 9, 2 (2019), 292-308.

Zhengian Chen, Xinkui Zhao, Chen Zhi, and Jianwei Yin. 2023. DeepBoot: Dynamic Scheduling System for Training and Inference Deep Learning
Tasks in GPU Cluster. IEEE Transactions on Parallel and Distributed Systems 34, 9 (2023), 2553-2567.

Jinwoo Choi, Yeonan Ha, Jounghoo Lee, Sangsu Lee, Jinho Lee, Hanhwi Jang, and Youngsok Kim. 2023. Enabling Fine-Grained Spatial Multitasking
on Systolic-Array NPUs Using Dataflow Mirroring. IEEE Trans. Comput. 72, 12 (2023), 3383-3398.

Seungbeom Choi, Sunho Lee, Yeonjae Kim, Jongse Park, Youngjin Kwon, and Jaehyuk Huh. 2022. Serving Heterogeneous Machine Learning
Models on Multi-GPU Servers with Spatio-Temporal Sharing. In 2022 USENIX Annual Technical Conference (USENIX ATC 22). USENIX Association,
Carlsbad, CA, 199-216.

Yujeong Choi and Minsoo Rhu. 2020. PREMA: A Predictive Multi-Task Scheduling Algorithm For Preemptible Neural Processing Units. In 2020
IEEE International Symposium on High Performance Computer Architecture (HPCA). 220-233.

Marcus Chow, Ali Jahanshahi, and Daniel Wong. 2023. KRISP: Enabling Kernel-wise RIght-sizing for Spatial Partitioned GPU Inference Servers. In
2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA). 624-637.

Chunhua Deng, Siyu Liao, and Bo Yuan. 2021. PermCNN: Energy-Efficient Convolutional Neural Network Hardware Architecture With Permuted
Diagonal Structure. IEEE Trans. Comput. 70, 2 (2021), 163-173.

Aditya Dhakal, Sameer G Kulkarni, and K. K. Ramakrishnan. 2020. GSLICE: controlled spatial sharing of GPUs for a scalable inference platform. In
Proceedings of the 11th ACM Symposium on Cloud Computing (Virtual Event, USA) (SoCC °20). Association for Computing Machinery, New York,
NY, USA, 492-506.

Kate Donahue and Jon Kleinberg. 2020. Fairness and utilization in allocating resources with uncertain demand. In Proceedings of the 2020 Conference
on Fairness, Accountability, and Transparency (Barcelona, Spain) (FAT* °20). Association for Computing Machinery, New York, NY, USA, 658-668.
Yajuan Du, Mingyang Liu, Yuqi Yang, Mingzhe Zhang, and Xulong Tang. 2022. Enhancing GPU Performance via Neighboring Directory Table
Based Inter-TLB Sharing. In 2022 IEEE 40th International Conference on Computer Design (ICCD). 146-153.

Jiangfei Duan, Ziang Song, Xupeng Miao, Xiaoli Xi, Dahua Lin, Harry Xu, Minjia Zhang, and Zhihao Jia. 2024. Parcae: Proactive, Liveput-Optimized
DNN Training on Preemptible Instances. In 21st USENIX Symposium on Networked Systems Design and Implementation (NSDI 24). USENIX
Association, Santa Clara, CA, 1121-1139.

Amir Erfan Eshratifar and Massoud Pedram. 2020. Runtime Deep Model Multiplexing for Reduced Latency and Energy Consumption Inference. In
2020 IEEE 38th International Conference on Computer Design (ICCD). 263-270.

Hongxiang Fan, Stylianos I. Venieris, Alexandros Kouris, and Nicholas Lane. 2023. Sparse-DySta: Sparsity-Aware Dynamic and Static Scheduling
for Sparse Multi-DNN Workloads. In Proceedings of the 56th Annual IEEE/ACM International Symposium on Microarchitecture (Toronto, ON, Canada)
(MICRO °23). Association for Computing Machinery, New York, NY, USA, 353-366.

Henrique Fingler, Zhiting Zhu, Esther Yoon, Zhipeng Jia, Emmett Witchel, and Christopher J. Rossbach. 2022. DGSF: Disaggregated GPUs
for Serverless Functions. In 2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS). 739-750. https://doi.org/10.1109/
IPDPS53621.2022.00077

Debashis Ganguly, Rami Melhem, and Jun Yang. 2021. An Adaptive Framework for Oversubscription Management in CPU-GPU Unified Memory.
In 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE). 1212-1217.

Chengsi Gao, Ying Wang, Cheng Liu, Mengdi Wang, Weiwei Chen, Yinhe Han, and Lei Zhang. 2023. Layer-Puzzle: Allocating and Scheduling
Multi-task on Multi-core NPUs by Using Layer Heterogeneity. In 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE). 1-6.
Ilias Giechaskiel, Kasper B. Rasmussen, and Ken Eguro. 2018. Leaky Wires: Information Leakage and Covert Communication Between FPGA
Long Wires. In Proceedings of the 2018 on Asia Conference on Computer and Communications Security (Incheon, Republic of Korea) (ASIACCS ’18).
Association for Computing Machinery, New York, NY, USA, 15-27. https://doi.org/10.1145/3196494.3196518

Ashish Gondimalla, Noah Chesnut, Mithuna Thottethodi, and TN Vijaykumar. 2019. SparTen: A sparse tensor accelerator for convolutional neural
networks. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture. 151-165.

Jianfeng Gu, Yichao Zhu, Puxuan Wang, Mohak Chadha, and Michael Gerndt. 2023. FaST-GShare: Enabling Efficient Spatio-Temporal GPU Sharing
in Serverless Computing for Deep Learning Inference. In Proceedings of the 52nd International Conference on Parallel Processing (Salt Lake City, UT,
USA) (ICPP °23). Association for Computing Machinery, New York, NY, USA, 635-644.

Mingcong Han, Hanze Zhang, Rong Chen, and Haibo Chen. 2022. Microsecond-scale Preemption for Concurrent GPU-accelerated DNN Inferences.
In 16th USENIX Symposium on Operating Systems Design and Implementation (OSDI 22). USENIX Association, Carlsbad, CA, 539-558.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and William J Dally. 2016. EIE: Efficient inference engine on
compressed deep neural network. ACM SIGARCH Computer Architecture News 44, 3 (2016), 243-254.

Cheol-Ho Hong, Ivor Spence, and Dimitrios S. Nikolopoulos. 2017. GPU Virtualization and Scheduling Methods: A Comprehensive Survey. ACM
Comput. Surv. 50, 3, Article 35 (jun 2017), 37 pages.

Liang Hu, Xilong Che, and Si-Qing Zheng. 2016. A Closer Look at GPGPU. ACM Comput. Surv. 48, 4, Article 60 (mar 2016), 20 pages.

Manuscript submitted to ACM

https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/IPDPS53621.2022.00077
https://doi.org/10.1109/IPDPS53621.2022.00077
https://doi.org/10.1145/3196494.3196518

1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611

1612

On Efficiency, Fairness and Security in Al Accelerator Resource Sharing: A Survey 31

(42]

(43]

(44]

(45]

(46]

(47]

(48]

(49]

(50

[52

(58

(59]

(60]

Qinghao Hu, Peng Sun, Shengen Yan, Yonggang Wen, and Tianwei Zhang. 2021. Characterization and prediction of deep learning workloads in
large-scale gpu datacenters. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. 1-15.
Qinghao Hu, Meng Zhang, Peng Sun, Yonggang Wen, and Tianwei Zhang. 2023. Lucid: A Non-intrusive, Scalable and Interpretable Scheduler for
Deep Learning Training Jobs. In Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2 (Vancouver, BC, Canada) (ASPLOS 2023). Association for Computing Machinery, New York, NY, USA, 457-472.
Weiming Huang, Yajuan Du, and Mingyang Liu. 2023. GPU Performance Acceleration via Intra-Group Sharing TLB. In Proceedings of the 52nd
International Conference on Parallel Processing (Salt Lake City, UT, USA) (ICPP °23). Association for Computing Machinery, New York, NY, USA,
705-714.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al.
2019. Gpipe: Efficient training of giant neural networks using pipeline parallelism. Advances in neural information processing systems 32 (2019).
Paras Jain, Xiangxi Mo, Ajay Jain, Harikaran Subbaraj, Rehan Sohail Durrani, Alexey Tumanov, Joseph Gonzalez, and Ion Stoica. 2018. Dynamic
space-time scheduling for gpu inference. arXiv preprint arXiv:1901.00041 (2018).

Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie Qian, Wencong Xiao, and Fan Yang. 2019. Analysis of {Large-Scale } { Multi-
Tenant} {GPU} clusters for {DNN} training workloads. In 2019 USENIX Annual Technical Conference (USENIX ATC 19). 947-960.

Zhuoran Ji and Cho-Li Wang. 2021. Collaborative gpu preemption via spatial multitasking for efficient gpu sharing. In European Conference on
Parallel Processing. Springer, 89-104.

Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanxiong Guo. 2020. A Unified Architecture for Accelerating Distributed DNN
Training in Heterogeneous GPU/CPU Clusters. In 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20). USENIX
Association, 463-479.

Ziheng Jiang, Haibin Lin, Yinmin Zhong, Qi Huang, Yangrui Chen, Zhi Zhang, Yanghua Peng, Xiang Li, Cong Xie, Shibiao Nong, Yulu Jia, Sun He,
Hongmin Chen, Zhihao Bai, Qi Hou, Shipeng Yan, Ding Zhou, Yiyao Sheng, Zhuo Jiang, Haohan Xu, Haoran Wei, Zhang Zhang, Pengfei Nie, Leqi
Zou, Sida Zhao, Liang Xiang, Zherui Liu, Zhe Li, Xiaoying Jia, Jianxi Ye, Xin Jin, and Xin Liu. 2024. MegaScale: Scaling Large Language Model
Training to More Than 10,000 GPUs. In 21st USENIX Symposium on Networked Systems Design and Implementation (NSDI 24). USENIX Association,
Santa Clara, CA, 745-760. https://www.usenix.org/conference/nsdi24/presentation/jiang-ziheng

Norm Jouppi, George Kurian, Sheng Li, Peter Ma, Rahul Nagarajan, Lifeng Nai, Nishant Patil, Suvinay Subramanian, Andy Swing, Brian Towles,
Clifford Young, Xiang Zhou, Zongwei Zhou, and David A Patterson. 2023. TPU v4: An Optically Reconfigurable Supercomputer for Machine
Learning with Hardware Support for Embeddings. In Proceedings of the 50th Annual International Symposium on Computer Architecture (Orlando,
FL, USA) (ISCA °23). Association for Computing Machinery, New York, NY, USA, Article 82, 14 pages.

Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al
Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir
Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian
Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon,
James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller,
Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross,
Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan,
Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. 2017.
In-Datacenter Performance Analysis of a Tensor Processing Unit. SSIGARCH Comput. Archit. News 45, 2 (jun 2017), 1-12.

Raju K and Niranjan N. Chiplunkar. 2018. A survey on techniques for cooperative CPU-GPU computing. Sustainable Computing: Informatics and
Systems 19 (2018), 72-85.

Donghyun Kang and Soonhoi Ha. 2020. Tensor Virtualization Technique to Support Efficient Data Reorganization for CNN Accelerators. In 2020
57th ACM/IEEE Design Automation Conference (DAC). 1-6.

Sheng-Chun Kao and Tushar Krishna. 2022. MAGMA: An Optimization Framework for Mapping Multiple DNNs on Multiple Accelerator Cores. In
2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA). 814-830.

Jason Kennedy, Vishal Sharma, Blesson Varghese, and Carlos Reafio. 2023. Multi-Tier GPU Virtualization for Deep Learning in Cloud-Edge Systems.
IEEE Transactions on Parallel and Distributed Systems 34, 7 (2023), 2107-2123.

Seah Kim, Hasan Genc, Vadim Vadimovich Nikiforov, Krste Asanovi¢, Borivoje Nikoli¢, and Yakun Sophia Shao. 2023. MoCA: Memory-Centric,
Adaptive Execution for Multi-Tenant Deep Neural Networks. In 2023 IEEE International Symposium on High-Performance Computer Architecture
(HPCA). 828-841.

Seah Kim, Jerry Zhao, Krste Asanovic, Borivoje Nikolic, and Yakun Sophia Shao. 2023. AuRORA: Virtualized Accelerator Orchestration for
Multi-Tenant Workloads. In Proceedings of the 56th Annual IEEE/ACM International Symposium on Microarchitecture (Toronto, ON, Canada) (MICRO
"23). Association for Computing Machinery, New York, NY, USA, 62-76.

Young Geun Kim and Carole-Jean Wu. 2020. AutoScale: Energy Efficiency Optimization for Stochastic Edge Inference Using Reinforcement
Learning. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 1082-1096.

Munkyu Lee, Sihoon Seong, Minki Kang, Jihyuk Lee, Gap-Joo Na, In-Geol Chun, Dimitrios Nikolopoulos, and Cheol-Ho Hong. 2024. ParvaGPU:
Efficient Spatial GPU Sharing for Large-Scale DNN Inference in Cloud Environments. In SC24: International Conference for High Performance
Computing, Networking, Storage and Analysis. 1-14. https://doi.org/10.1109/SC41406.2024.00048

Manuscript submitted to ACM

https://www.usenix.org/conference/nsdi24/presentation/jiang-ziheng
https://doi.org/10.1109/SC41406.2024.00048

1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664

32

N
N

(62

[63

(64

(65

66]

(67

(68

[69]

[70

(72]

(73

(74

(75]

[76]

(77

(78]

(79]

(80]

(81]

(82]

Huang et al.

Matthew LeMay, Shijian Li, and Tian Guo. 2020. PERSEUS: Characterizing Performance and Cost of Multi-Tenant Serving for CNN Models. In 2020
IEEE International Conference on Cloud Engineering (IC2E). 66-72.

Baolin Li, Tirthak Patel, Siddharth Samsi, Vijay Gadepally, and Devesh Tiwari. 2022. Miso: exploiting multi-instance gpu capability on multi-tenant
gpu clusters. In Proceedings of the 13th Symposium on Cloud Computing. 173-189.

Chen Li, Rachata Ausavarungnirun, Christopher J. Rossbach, Youtao Zhang, Onur Mutlu, Yang Guo, and Jun Yang. 2019. A Framework for Memory
Oversubscription Management in Graphics Processing Units. In Proceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems (Providence, RI, USA) (ASPLOS °19). Association for Computing Machinery, New York, NY,
USA, 49-63.

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, et al.
2020. Pytorch distributed: Experiences on accelerating data parallel training. arXiv preprint arXiv:2006.15704 (2020).

Yusen Li, Chuxu Shan, Ruobing Chen, Xueyan Tang, Wentong Cai, Shanjiang Tang, Xiaoguang Liu, Gang Wang, Xiaoli Gong, and Ying Zhang.
2019. GAugur: Quantifying Performance Interference of Colocated Games for Improving Resource Utilization in Cloud Gaming. In Proceedings
of the 28th International Symposium on High-Performance Parallel and Distributed Computing (Phoenix, AZ, USA) (HPDC ’19). Association for
Computing Machinery, New York, NY, USA, 231-242.

Feng Liang, Zhen Zhang, Haifeng Lu, Chengming Li, Victor Leung, Yanyi Guo, and Xiping Hu. 2024. Resource Allocation and Workload Scheduling
for Large-Scale Distributed Deep Learning: A Survey. arXiv preprint arXiv:2406.08115 (2024).

Gangmuk Lim, Jeongseob Ahn, Wencong Xiao, Youngjin Kwon, and Myeongjae Jeon. 2021. Zico: Efficient GPU Memory Sharing for Concurrent
DNN Training. In 2021 USENIX Annual Technical Conference (USENIX ATC 21). USENIX Association, 161-175.

Shao-Fu Lin, Yi-Jung Chen, Hsiang-Yun Cheng, and Chia-Lin Yang. 2023. Tensor Movement Orchestration in Multi-GPU Training Systems. In 2023
IEEE International Symposium on High-Performance Computer Architecture (HPCA). 1140-1152.

Liu Liu, Jian Yu, and Zhijun Ding. 2023. Adaptive and Efficient GPU Time Sharing for Hyperparameter Tuning in Cloud. In Proceedings of the 51st
International Conference on Parallel Processing (Bordeaux, France) (ICPP °22). Association for Computing Machinery, New York, NY, USA, Article 5,
11 pages.

Shaoli Liu, Zidong Du, Jinhua Tao, Dong Han, Tao Luo, Yuan Xie, Yunji Chen, and Tianshi Chen. 2016. Cambricon: An instruction set architecture
for neural networks. ACM SIGARCH Computer Architecture News 44, 3 (2016), 393-405.

Yan Liu, Yansha Deng, Arumugam Nallanathan, and Jinhong Yuan. 2023. Machine Learning for 6G Enhanced Ultra-Reliable and Low-Latency
Services. IEEE Wireless Communications 30, 2 (2023), 48-54.

Yunzhuo Liu, Bo Jiang, Shizhen Zhao, Tao Lin, Xinbing Wang, and Chenghu Zhou. 2023. Libra: Contention-Aware GPU Thread Allocation for
Data Parallel Training in High Speed Networks. In IEEE INFOCOM 2023 - IEEE Conference on Computer Communications. 1-10.

Zihan Liu, Jingwen Leng, Zhihui Zhang, Quan Chen, Chao Li, and Minyi Guo. 2022. VELTAIR: towards high-performance multi-tenant deep
learning services via adaptive compilation and scheduling. In Proceedings of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS °22). Association for Computing Machinery, New York, NY, USA,
388-401.

Qiumin Lu, Jianguo Yao, Haibing Guan, and Ping Gao. 2020. gQoS: A QoS-Oriented GPU Virtualization with Adaptive Capacity Sharing. IEEE
Transactions on Parallel and Distributed Systems 31, 4 (2020), 843-855.

Diaohan Luo, Tian Yu, Yuewen Wu, Heng Wu, Tao Wang, and Wenbo Zhang. 2023. SPLIT: QoS-Aware DNN Inference on Shared GPU via
Evenly-Sized Model Splitting. In Proceedings of the 52nd International Conference on Parallel Processing (Salt Lake City, UT, USA) (ICPP ’23).
Association for Computing Machinery, New York, NY, USA, 605-614.

Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Xiaohe Cheng, Yangiang Liu, Abel Mulugeta Eneyew, Zhengwei Qi, and Baris Kasikei. 2020. A Hypervisor
for Shared-Memory FPGA Platforms. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS °20). Association for Computing Machinery, New York, NY, USA, 827-844.
https://doi.org/10.1145/3373376.3378482

Kshiteej Mahajan, Arjun Balasubramanian, Arjun Singhvi, Shivaram Venkataraman, Aditya Akella, Amar Phanishayee, and Shuchi Chawla. 2020.
Themis: Fair and Efficient GPU Cluster Scheduling. In 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI 20).
USENIX Association, Santa Clara, CA, 289-304.

Mohammad-Ali Maleki, Alireza Nabipour-Meybodi, Mehdi Kamal, Ali Afzali-Kusha, and Massoud Pedram. 2021. An energy-efficient inference
method in convolutional neural networks based on dynamic adjustment of the pruning level. ACM Transactions on Design Automation of Electronic
Systems (TODAES) 26, 6 (2021), 1-20.

Ruben Mayer and Hans-Arno Jacobsen. 2020. Scalable Deep Learning on Distributed Infrastructures: Challenges, Techniques, and Tools. ACM
Comput. Surv. 53, 1, Article 3 (feb 2020), 37 pages.

Xupeng Miao, Yujie Wang, Youhe Jiang, Chunan Shi, Xiaonan Nie, Hailin Zhang, and Bin Cui. 2022. Galvatron: Efficient transformer training over
multiple gpus using automatic parallelism. arXiv preprint arXiv:2211.13878 (2022).

Panagiotis Miliadis, Dimitris Theodoropoulos, Dionisios Pnevmatikatos, and Nectarios Koziris. 2024. Architectural Support for Sharing, Isolating
and Virtualizing FPGA Resources. ACM Trans. Archit. Code Optim. 21, 2, Article 33 (May 2024), 26 pages. https://doi.org/10.1145/3648475
Hyemi Min, Jungyoon Kwon, and Bernhard Egger. 2023. Flexer: Out-of-Order Scheduling for Multi-NPUs. In Proceedings of the 21st ACM/IEEE
International Symposium on Code Generation and Optimization (CGO 2023). Association for Computing Machinery, New York, NY, USA, 212-223.

Manuscript submitted to ACM

https://doi.org/10.1145/3373376.3378482
https://doi.org/10.1145/3648475

1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715

1716

On Efficiency, Fairness and Security in Al Accelerator Resource Sharing: A Survey 33

(83

(84]

(85]

(86]

(87]

%
&

)
=2

[93

[94]

(95

[96]

[97

(98]

[99

[100]

[101

[102

[103

Jayashree Mohan, Amar Phanishayee, Janardhan Kulkarni, and Vijay Chidambaram. 2022. Looking Beyond GPUs for DNN Scheduling on
Multi-Tenant Clusters. In 16th USENIX Symposium on Operating Systems Design and Implementation (OSDI 22). USENIX Association, Carlsbad, CA,
579-596.

Seonjin Na, Jungwoo Kim, Sunho Lee, and Jaehyuk Huh. 2024. Supporting Secure Multi-GPU Computing with Dynamic and Batched Metadata
Management. In 2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA). 204-217.

Supun Nakandala, Yuhao Zhang, and Arun Kumar. 2020. Cerebro: A data system for optimized deep learning model selection. Proceedings of the
VLDB Endowment 13, 12 (2020), 2159-2173.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi
Kashinkunti, Julie Bernauer, Bryan Catanzaro, et al. 2021. Efficient large-scale language model training on gpu clusters using megatron-lm. In
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. 1-15.

Thomas Norrie, Nishant Patil, Doe Hyun Yoon, George Kurian, Sheng Li, James Laudon, Cliff Young, Norman Jouppi, and David Patterson. 2021.
The Design Process for Google’s Training Chips: TPUv2 and TPUv3. IEEE Micro 41, 2 (2021), 56-63.

Young H. Oh, Seonghak Kim, Yunho Jin, Sam Son, Jonghyun Bae, Jongsung Lee, Yeonhong Park, Dong Uk Kim, Tae Jun Ham, and Jae W. Lee. 2021.
Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Scheduling. In 2021 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). 584-597.

Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rangharajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W. Keckler,
and William J. Dally. 2017. SCNN: An Accelerator for Compressed-sparse Convolutional Neural Networks. In Proceedings of the 44th Annual
International Symposium on Computer Architecture (Toronto, ON, Canada) (ISCA ’17). Association for Computing Machinery, New York, NY, USA,
27-40. https://doi.org/10.1145/3079856.3080254

Jason Jong Kyu Park, Yongjun Park, and Scott Mahlke. 2017. Dynamic Resource Management for Efficient Utilization of Multitasking GPUs.
SIGPLAN Not. 52, 4 (apr 2017), 527-540.

Manos Pavlidakis, Stelios Mavridis, Antony Chazapis, Giorgos Vasiliadis, and Angelos Bilas. 2022. Arax: a runtime framework for decoupling
applications from heterogeneous accelerators. In Proceedings of the 13th Symposium on Cloud Computing (San Francisco, California) (SoCC "22).
Association for Computing Machinery, New York, NY, USA, 1-15. https://doi.org/10.1145/3542929.3563467

Manos Pavlidakis, Giorgos Vasiliadis, Stelios Mavridis, Anargyros Argyros, Antony Chazapis, and Angelos Bilas. 2024. Guardian: Safe GPU
Sharing in Multi-Tenant Environments. In Proceedings of the 25th International Middleware Conference (Hong Kong, Hong Kong) (MIDDLEWARE
"24). Association for Computing Machinery, New York, NY, USA, 313-326. https://doi.org/10.1145/3652892.3700768

Yajuan Peng, Shuang Chen, Yi Zhao, and Zhibin Yu. 2024. UFO: The Ultimate QoS-Aware Core Management for Virtualized and Oversubscribed
Public Clouds. In 21st USENIX Symposium on Networked Systems Design and Implementation (NSDI 24). USENIX Association, Santa Clara, CA,
1511-1530.

Yifan Qiao, Shu Anzai, Shan Yu, Haoran Ma, Yang Wang, Miryung Kim, and Harry Xu. 2024. ConServe: Harvesting GPUs for Low-Latency and
High-Throughput Large Language Model Serving. arXiv preprint arXiv:2410.01228 (2024).

Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet Nadella, Sudarshan Srinivasan, Dipankar Das, Bharat Kaul, and Tushar Krishna. 2020. Sigma:
A sparse and irregular gemm accelerator with flexible interconnects for dnn training. In 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 58-70.

Kiran Ranganath, Joshua D. Suetterlein, Joseph B. Manzano, Shuaiwen Leon Song, and Daniel Wong. 2021. MAPA: multi-accelerator pattern
allocation policy for multi-tenant GPU servers. In Proceedings of the International Conference for High Performance Computing, Networking, Storage
and Analysis (St. Louis, Missouri) (SC °21). Association for Computing Machinery, New York, NY, USA, Article 99, 14 pages.

Jinke Ren, Guanding Yu, and Guangyao Ding. 2021. Accelerating DNN Training in Wireless Federated Edge Learning Systems. IEEE Journal on
Selected Areas in Communications 39, 1 (2021), 219-232.

Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfigar, and Stephen W. Keckler. 2016. vDNN: Virtualized deep neural networks for
scalable, memory-efficient neural network design. In 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 1-13.
Urvij Saroliya, Eishi Arima, Dai Liu, and Martin Schulz. 2023. Hierarchical Resource Partitioning on Modern GPUs: A Reinforcement Learning
Approach. In 2023 IEEE International Conference on Cluster Computing (CLUSTER). 185-196.

Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajbhandari, Jared Casper, Zhun Liu, Shrimai Prabhumoye, George
Zerveas, Vijay Korthikanti, et al. 2022. Using deepspeed and megatron to train megatron-turing nlg 530b, a large-scale generative language model.
arXiv preprint arXiv:2201.11990 (2022).

Jakob Stangl, Thomas Loriinser, and Sai Manoj Pudukotai Dinakarrao. 2018. A fast and resource efficient FPGA implementation of secret sharing
for storage applications. In 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 654-659.

Jakob Stangl, Thomas Loriinser, and Sai Manoj Pudukotai Dinakarrao. 2018. A fast and resource efficient FPGA implementation of secret sharing
for storage applications. In 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE). 654-659. https://doi.org/10.23919/DATE.
2018.8342091

Foteini Strati, Xianzhe Ma, and Ana Klimovic. 2024. Orion: Interference-aware, Fine-grained GPU Sharing for ML Applications. In Proceedings of
the Nineteenth European Conference on Computer Systems (Athens, Greece) (EuroSys °24). Association for Computing Machinery, New York, NY,
USA, 1075-1092.

Manuscript submitted to ACM

https://doi.org/10.1145/3079856.3080254
https://doi.org/10.1145/3542929.3563467
https://doi.org/10.1145/3652892.3700768
https://doi.org/10.23919/DATE.2018.8342091
https://doi.org/10.23919/DATE.2018.8342091

1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768

34

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

Huang et al.

Biao Sun, Ziming Huang, Hanyu Zhao, Wencong Xiao, Xinyi Zhang, Yong Li, and Wei Lin. 2024. Llumnix: Dynamic Scheduling for Large Language
Model Serving. arXiv preprint arXiv:2406.03243 (2024).

Qingxiao Sun, Liu Yi, Hailong Yang, Mingzhen Li, Zhongzhi Luan, and Depei Qian. 2022. QoS-aware dynamic resource allocation with improved
utilization and energy efficiency on GPU. Parallel Comput. 113 (2022), 102958.

Cheng Tan, Zhichao Li, Jian Zhang, Yu Cao, Sikai Qi, Zherui Liu, Yibo Zhu, and Chuanxiong Guo. 2021. Serving DNN models with multi-instance
gpus: A case of the reconfigurable machine scheduling problem. arXiv preprint arXiv:2109.11067 (2021).

Huailiang Tan, Yanjie Tan, Xiaofei He, Kenli Li, and Keqin Li. 2019. A Virtual Multi-Channel GPU Fair Scheduling Method for Virtual Machines.
IEEE Transactions on Parallel and Distributed Systems 30, 2 (2019), 257-270.

Shanquan Tian, Wenjie Xiong, Ilias Giechaskiel, Kasper Rasmussen, and Jakub Szefer. 2020. Fingerprinting Cloud FPGA Infrastructures. In
Proceedings of the 2020 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (Seaside, CA, USA) (FPGA ’20). Association for
Computing Machinery, New York, NY, USA, 58-64. https://doi.org/10.1145/3373087.3375322

Yash Ukidave, Xiangyu Li, and David Kaeli. 2016. Mystic: Predictive Scheduling for GPU Based Cloud Servers Using Machine Learning. In 2016
IEEE International Parallel and Distributed Processing Symposium (IPDPS). 353-362. https://doi.org/10.1109/IPDPS.2016.73

Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. 2018. Graviton: Trusted Execution Environments on GPUs. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 681-696. https://www.usenix.org/conference/osdi18/
presentation/volos

Ne Wang, Ruiting Zhou, Ling Han, Hao Chen, and Zongpeng Li. 2023. Online Scheduling of Distributed Machine Learning Jobs for Incentivizing
Sharing in Multi-Tenant Systems. IEEE Trans. Comput. 72, 3 (2023), 653-667.

Shaoqi Wang, Oscar J Gonzalez, Xiaobo Zhou, Thomas Williams, Brian D Friedman, Martin Havemann, and Thomas Woo. 2020. An efficient and
non-intrusive GPU scheduling framework for deep learning training systems. In SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 1-13.

Xiaying Wang, Michele Magno, Lukas Cavigelli, and Luca Benini. 2020. FANN-on-MCU: An Open-Source Toolkit for Energy-Efficient Neural
Network Inference at the Edge of the Internet of Things. IEEE Internet of Things Journal 7, 5 (2020), 4403-4417.

Xuhang Wang, Zhuoran Song, and Xiaoyao Liang. 2023. RealArch: A Real-Time Scheduler for Mapping Multi-Tenant DNNs on Multi-Core
Accelerators. In 2023 IEEE 41st International Conference on Computer Design (ICCD). 158-165.

Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang, Cheng Wang, Jian He, Yong Li, Liping Zhang, Wei Lin, and Yu Ding. 2022. MLaaS in the
Wild: Workload Analysis and Scheduling in Large-Scale Heterogeneous GPU Clusters. In 19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22). USENIX Association, Renton, WA, 945-960.

Qizhen Weng, Lingyun Yang, Yinghao Yu, Wei Wang, Xiaochuan Tang, Guodong Yang, and Liping Zhang. 2023. Beware of Fragmentation:
Scheduling GPU-Sharing Workloads with Fragmentation Gradient Descent. In 2023 USENIX Annual Technical Conference (USENIX ATC 23). USENIX
Association, Boston, MA, 995-1008.

Bingyang Wu, Zili Zhang, Zhihao Bai, Xuanzhe Liu, and Xin Jin. 2023. Transparent GPU Sharing in Container Clouds for Deep Learning Workloads.
In 20th USENIX Symposium on Networked Systems Design and Implementation (NSDI 23). USENIX Association, Boston, MA, 69-85.

Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Sivathanu, Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng, Hanyu
Zhao, Quanlu Zhang, Fan Yang, and Lidong Zhou. 2018. Gandiva: Introspective Cluster Scheduling for Deep Learning. In 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 595-610. https://www.usenix.org/conference/
osdi18/presentation/xiao

Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang, Pengyang Hou, Zhi Li, Yihui Feng, Wei Lin, and Yangqing Jia. 2020. AntMan: Dynamic Scaling on
GPU Clusters for Deep Learning. In 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20). USENIX Association,
533-548.

Fei Xu, Jianian Xu, Jiabin Chen, Li Chen, Ruitao Shang, Zhi Zhou, and Fangming Liu. 2023. iGniter: Interference-Aware GPU Resource Provisioning
for Predictable DNN Inference in the Cloud. IEEE Transactions on Parallel and Distributed Systems 34, 3 (2023), 812-827.

Xin Xu, Na Zhang, Michael Cui, Michael He, and Ridhi Surana. 2019. Characterization and Prediction of Performance Interference on Mediated
Passthrough GPUs for Interference-aware Scheduler. In 11th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 19). USENIX Association,
Renton, WA.

Zichuan Xu, Ligian Zhao, Weifa Liang, Omer F Rana, Pan Zhou, Qiufen Xia, Wenzheng Xu, and Guowei Wu. 2020. Energy-aware inference
offloading for DNN-driven applications in mobile edge clouds. IEEE Transactions on Parallel and Distributed Systems 32, 4 (2020), 799-814.
Mochi Xue, Jiacheng Ma, Wentai Li, Kun Tian, Yaozu Dong, Jinyu Wu, Zhengwei Qi, Bingsheng He, and Haibing Guan. 2018. Scalable GPU
Virtualization with Dynamic Sharing of Graphics Memory Space. IEEE Transactions on Parallel and Distributed Systems 29, 8 (2018), 1823-1836.
Yuqi Xue, Yiqi Liu, Lifeng Nai, and Jian Huang. 2023. V10: Hardware-Assisted NPU Multi-tenancy for Improved Resource Utilization and Fairness.
In Proceedings of the 50th Annual International Symposium on Computer Architecture (Orlando, FL, USA) (ISCA °23). Association for Computing
Machinery, New York, NY, USA, Article 24, 15 pages.

Yi Yang, Ping Xiang, Mike Mantor, Norm Rubin, and Huiyang Zhou. 2012. Shared memory multiplexing: a novel way to improve GPGPU
throughput. In Proceedings of the 21st International Conference on Parallel Architectures and Compilation Techniques (Minneapolis, Minnesota, USA)
(PACT ’12). Association for Computing Machinery, New York, NY, USA, 283-292.

Manuscript submitted to ACM

https://doi.org/10.1145/3373087.3375322
https://doi.org/10.1109/IPDPS.2016.73
https://www.usenix.org/conference/osdi18/presentation/volos
https://www.usenix.org/conference/osdi18/presentation/volos
https://www.usenix.org/conference/osdi18/presentation/xiao
https://www.usenix.org/conference/osdi18/presentation/xiao

1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819

1820

On Efficiency, Fairness and Security in Al Accelerator Resource Sharing: A Survey 35

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

Jianguo Yao, Qiumin Lu, Run Tian, Keqin Li, and Haibing Guan. 2023. An Economy-Oriented GPU Virtualization With Dynamic and Adaptive
Oversubscription. IEEE Trans. Comput. 72, 5 (2023), 1371-1383.

Shuochao Yao, Jinyang Li, Dongxin Liu, Tianshi Wang, Shengzhong Liu, Huajie Shao, and Tarek Abdelzaher. 2020. Deep compressive offloading:
Speeding up neural network inference by trading edge computation for network latency. In Proceedings of the 18th conference on embedded
networked sensor systems. 476—488.

Zhisheng Ye, Wei Gao, Qinghao Hu, Peng Sun, Xiaolin Wang, Yingwei Luo, Tianwei Zhang, and Yonggang Wen. 2024. Deep Learning Workload
Scheduling in GPU Datacenters: A Survey. ACM Comput. Surv. 56, 6, Article 146 (jan 2024), 38 pages.

Ting-An Yeh, Hung-Hsin Chen, and Jerry Chou. 2020. KubeShare: A Framework to Manage GPUs as First-Class and Shared Resources in Container
Cloud. In Proceedings of the 29th International Symposium on High-Performance Parallel and Distributed Computing (Stockholm, Sweden) (HPDC
"20). Association for Computing Machinery, New York, NY, USA, 173-184.

Fuxun Yu, Di Wang, Longfei Shangguan, Minjia Zhang, Chenchen Liu, and Xiang Chen. 2022. A survey of multi-tenant deep learning inference on
gpu. arXiv preprint arXiv:2203.09040 (2022).

Hangchen Yu, Arthur Michener Peters, Amogh Akshintala, and Christopher J. Rossbach. 2020. AvA: Accelerated Virtualization of Accelerators. In
Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems (Lausanne,
Switzerland) (ASPLOS °20). Association for Computing Machinery, New York, NY, USA, 807-825.

Peifeng Yu and Mosharaf Chowdhury. 2020. Fine-Grained GPU Sharing Primitives for Deep Learning Applications. In Proceedings of Machine
Learning and Systems, 1. Dhillon, D. Papailiopoulos, and V. Sze (Eds.), Vol. 2. 98-111.

Qi Yu, Bruce Childers, Libo Huang, Cheng Qian, Hui Guo, and Zhiying Wang. 2020. Coordinated Page Prefetch and Eviction for Memory
Oversubscription Management in GPUs. In 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS). 472-482.

Deze Zeng, Andong Zhu, Lin Gu, Peng Li, Quan Chen, and Minyi Guo. 2023. Enabling Efficient Spatio-Temporal GPU Sharing for Network
Function Virtualization. IEEE Trans. Comput. 72, 10 (2023), 2963-2977.

Shulin Zeng, Guohao Dai, Niansong Zhang, Xinhao Yang, Haoyu Zhang, Zhenhua Zhu, Huazhong Yang, and Yu Wang. 2023. Serving Multi-
DNN Workloads on FPGAs: A Coordinated Architecture, Scheduling, and Mapping Perspective. IEEE Trans. Comput. 72, 5 (2023), 1314-1328.
https://doi.org/10.1109/TC.2022.3214113

Bingyi Zhang, Hanqing Zeng, and Viktor K Prasanna. 2023. Graphagile: An fpga-based overlay accelerator for low-latency gnn inference. IEEE
Transactions on Parallel and Distributed Systems 34, 9 (2023), 2580-2597.

Feng Zhang, Zheng Chen, Chenyang Zhang, Amelie Chi Zhou, Jidong Zhai, and Xiaoyong Du. 2021. An Efficient Parallel Secure Machine Learning
Framework on GPUs. IEEE Transactions on Parallel and Distributed Systems 32, 9 (2021), 2262-2276.

Haoyang Zhang, Yirui Zhou, Yuqi Xue, Yiqi Liu, and Jian Huang. 2023. G10: Enabling An Efficient Unified GPU Memory and Storage Architecture
with Smart Tensor Migrations. In Proceedings of the 56th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO °23). Association
for Computing Machinery, New York, NY, USA, 395-410.

Kai Zhang, Bingsheng He, Jiayu Hu, Zeke Wang, Bei Hua, Jiayi Meng, and Lishan Yang. 2018. G-NET: Effective GPU Sharing in NFV Systems. In
15th USENIX Symposium on Networked Systems Design and Implementation (NSDI 18). USENIX Association, Renton, WA, 187-200.

Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li, Qi Guo, Tianshi Chen, and Yunji Chen. 2016. Cambricon-X: An accelerator
for sparse neural networks. In 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 1-12.

Chen Zhao, Wu Gao, Feiping Nie, and Huiyang Zhou. 2022. A Survey of GPU Multitasking Methods Supported by Hardware Architecture. IEEE
Transactions on Parallel and Distributed Systems 33, 6 (2022), 1451-1463.

Xiaohui Zhao, Jianguo Yao, Ping Gao, and Haibing Guan. 2018. Efficient Sharing and Fine-Grained Scheduling of Virtualized GPU Resources. In
2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS). 742-752.

Yihao Zhao, Yuanqiang Liu, Yanghua Peng, Yibo Zhu, Xuanzhe Liu, and Xin Jin. 2022. Multi-resource interleaving for deep learning training. In
Proceedings of the ACM SIGCOMM 2022 Conference (Amsterdam, Netherlands) (SSIGCOMM ’22). Association for Computing Machinery, New York,
NY, USA, 428-440.

Zhuangdi Zhu, Alex X Liu, Fan Zhang, and Fei Chen. 2018. FPGA resource pooling in cloud computing. IEEE Transactions on Cloud Computing 9, 2
(2018), 610-626.

Received 27 August 2024; revised 15 January 2025; accepted 25 February 2025

Manuscript submitted to ACM

https://doi.org/10.1109/TC.2022.3214113

	Abstract
	1 Introduction
	1.1 Overview of the Field
	1.2 Existing Surveys
	1.3 Article Organization

	2 Background
	2.1 Brief View of AI Accelerators
	2.2 Performance Measures for AI Workloads
	2.3 Key Concepts and Fundamentals

	3 Efficiency-oriented AI Accelerator Sharing
	3.1 Efficiency of Training
	3.2 Efficiency of Inference
	3.3 Efficiency of Mixed Workloads
	3.4 Discussion

	4 Rising Concerns in AI Accelerator Sharing
	4.1 Fairness
	4.2 Interference
	4.3 Security
	4.4 Discussion

	5 Open Challenges
	5.1 SLA-aware Resource Sharing and Job Packing
	5.2 Resource Sharing over Heterogeneous Accelerators
	5.3 Coordination of Global Scheduler and Local Schedulers
	5.4 Resource Contention and User Experience in LLM Workloads
	5.5 Accelerator Sharing Expands from Device-Level to Cluster-Level

	6 CONCLUSIONS
	Acknowledgments
	References

