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Abstract

Conventional fairness in multi-tenant Large Language Model
(LLM) inference services is typically defined by system-
centric metrics such as equitable resource allocation. We ar-
gue that this is unilateral and it creates a gap between mea-
sured system performance and actual user-perceived quality.
We challenge this notion by introducing and formalizing Ex-
periential Fairness, a user-centric paradigm that shifts the ob-
jective from equality of opportunity (resource access) to eq-
uity of outcome (user experience). With this motivation we
propose ExFairS, a lightweight scheduling framework that
perceives each user’s satisfaction as a composite measure
of Service Level Objective (SLO) compliance and resource
consumption, and dynamically re-orders the serving queue
guided by a credit-based priority mechanism. Extensive ex-
periments on an 8-GPU NVIDIA V100 node show that Ex-
FairS reduces the SLO violation rate by up to 100% and im-
proves system throughput by 14-21.9%, outperforming state-
of-the-art schedulers and delivering a demonstrably higher
degree of Experiential Fairness.

Code — https://github.com/dadiaokua/ExFairS

Introduction

As LLMs are widely adopted in areas such as intelligent cus-
tomer service, content creation, and automated software de-
velopment, achieving efficient and stable inference in pro-
duction has become a critical challenge. To address this,
next-generation inference frameworks such as vLLM (Kwon
et al. 2023) leverage key techniques like block-wise KV
caching and dynamic shared memory management to re-
duce memory fragmentation and enhance multi-request con-
currency, thereby significantly improving runtime efficiency
and resource utilization.

However, beyond performance metrics such as through-
put and latency, the fairness of serving under constrained
computational resources presents a unique challenge when
it comes to online serving. As the common rationale, First-
Come, First-Served (FCFS) potentially gives advantage to
users with high request rate, degrading the experience for

*Corresponding author.
Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

others. While more advanced schedulers like VTC (Sheng
et al. 2024) attempt to enforce fairness by prioritizing users
with lower historical resource consumption, they suffer from
a critical limitation that they are experience-blind. These
system-centric approaches ignore the subjective aspects of
user requests such as differing service tiers or latency sensi-
tivities. This leads to a “deceptive fairness”, where equaliz-
ing a system metric like average latency across clients with
different needs can result in a profoundly unequal user ex-
perience.

For instance, consider a math-solving request and a sim-
ple daily question both served with 3s latency. While this
appears to be “fair” on the system side, the delay is accept-
able for chained reasoning for the first but creates poor ex-
perience for the second, leading to a huge gap of satisfaction
between different users.

In this paper, we propose ExFairS, a request scheduling
method that jointly considers resource usage and user expe-
rience. We introduce the SLO-Aware Fairness Index (SAFI),
which reflects each client’s status based on these two fac-
tors. To further improve system-wide fairness, we incorpo-
rate a credit mechanism: clients with divergent SAFI en-
gage in resource exchanges mediated by credits—borrowing
resources earns credits, while consuming resources spends
them. Clients with higher credits are prioritized in future ex-
changes. This dynamic adjustment technique operates exter-
nally to the inference engine, providing a lightweight and
efficient approach to fairness optimization.

In summary, this paper makes the following contributions:

* We propose Experiential Fairness for LLM inference ser-
vices, shifting from Equality of Opportunity (uniform re-
source allocation) to Equity of Outcome (equitable user
experience). To our knowledge, this is the first work to
formally define and optimize this user-centric fairness
concept in LLM serving.

* We design ExFairS, an efficient scheduling framework
that operationalizes Experiential Fairness. ExFairS uses
a composite metric unifying user SLO compliance with
resource consumption to guide scheduling decisions.

* We introduce a proportional priority enqueueing mecha-
nism that translates client fairness state into scheduling
advantage, accelerating requests for underserved users
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Figure 1: Overview of ExFairS.

while preventing low-priority request starvation.

* We conducted extensive experiments across diverse and
challenging workloads. Results demonstrate that ExFairS
outperforms state-of-the-art schedulers in both through-
put and SLO compliance, validating the practical viabil-
ity of the Experiential Fairness paradigm.

Background

This section introduces LLM serving background and re-
views existing fairness work, highlighting the limitations
and challenges of prior approaches.

Related Work

SLO Optimization in LLM Inference LLM inference
services must meet strict SLOs to ensure user experience.
Existing methods address SLO management at various lay-
ers: QLM (Patke et al. 2024) predicts queueing delays for
workload control, PLANCK (Lin et al. 2024) allocates fine-
grained SLO budgets across pipeline stages, SCOOT (Cheng
et al. 2025) tunes engine parameters via Bayesian optimiza-
tion, the Past-Future Scheduler (Gong et al. 2025) balances
batching and memory usage, T-Vaccine (Liu et al. 2024) im-
proves safety alignment efficiency, and ServerlessLLM (Fu
et al. 2024) mitigates cold-start latency through multi-tier
checkpoint loading.

Fairness Optimization in Online Services Fairness opti-
mization spans multiple domains. In LLM inference, VTC
(Sheng et al. 2024) and DLPM (Cao et al. 2025) approx-
imate max-min fairness by prioritizing low-service clients,
with DLPM adding flexibility for higher cache efficiency.
In recommendation systems, P-MMF (Xu et al. 2023) and
(Singh, Kempe, and Joachims 2021) enhance exposure fair-
ness and model uncertainty-aware value fairness. For online
scheduling, PFAPPO (Sun et al. 2024) employs fairness-
aware reinforcement learning, and FAIR k-FOOD (Singh,
Kumar, and Chakraborty 2024) ensures equitable provider
income. These works balance fairness, efficiency, and utility
across contexts.

Challenge

Existing research on LLM inference services primarily fo-
cuses on system-level metrics—fairness, SLO compliance,
throughput (Sheng et al. 2023; Park and Egger 2024; Yang
et al. 2024b; Patel et al. 2024), cost (Xia et al. 2023; Pan
et al. 2024, 2025), and resource utilization (Oh et al. 2024;
He et al. 2024)—treating them as core optimization tar-
gets. However, this paradigm creates a critical gap between
measured performance and actual user-perceived quality.
Bridging this gap by creating a truly user-centric schedul-
ing methodology presents three fundamental challenges:

* Quantifying User Experience: Standard metrics like av-
erage latency are insufficient for streaming LLM ser-
vices. A robust metric must be sensitive to multi-
dimensional factors (e.g., Time-To-First-Token) and,
most importantly, to tail latency, which greatly affects
user satisfaction.

» Unifying Conflicting Objectives: Potential conflicts ex-
ist between user-centric indicators (e.g., low latency)
and system-centric goals (e.g., high throughput). This re-
quires designing a unified utility function that explicitly
encodes the trade-offs between them.

* Designing an Efficient Online Algorithm: Finally, a ro-
bust online scheduling algorithm is needed to optimize
this unified function, with its efficacy proven through
both rigorous experimentation and theoretical analysis.

Experiential Fairness

In this section we elaborate on why we need a new criterion
of fairness and how it is derived from resource usage and
user experience measures.

Necessity for a New Criterion

Fairness is a critical principle for multi-tenant LLM infer-
ence services, yet conventional approaches suffer from an
“experience-blindness” flaw. We argue that true fairness is
relative; the quality of a user’s experience can only be judged
against their specific and often diverse SLO. This principle
reframes the scheduling objective: instead of enforcing a sin-
gle performance standard for all, a fair system must strive
to provide a uniformly high degree of SLO fulfillment to
each individual user. Conventional methods, however, re-
main system-centric, mistakenly equating fairness with the
uniform allocation of resources while critically ignoring this
relativity. For instance, an urgent interactive query and a
background batch job might consume identical resources,
but the outcome is a failure for the latency-sensitive user
while being a success for the other. This leads to a ”decep-
tive fairness,” where system metrics appear balanced, yet the
actual, relative user experience remains profoundly unequal.

Measuring the Equity of Outcome

To address the aforementioned shortcoming, we propose a
new fairness standard based on a composite metric that uni-
fies user experience and resource consumption.



Algorithm 1: Resource Exchange by Credit

Input: A set of active clients C

Parameter: Fairness threshold 3

Output: Updated credit scores and resource quotas for all
clients C

L + Sort(C) by SAFI (desc) and Credit (desc)

—_

2: head <+ 0

3: tail <+ |L£] —1

4: while head < tail do

5. clienty <+ L[head]

6:  clienty, < Lltail]

7. if clientg.SAFI — client,.SAFI > /3 then
8: A « clienty . SAFI — client;, . SAFI

9: R + round(A x 5)

10: clientyg.credit < clientp.credit — R

11: clienty .resource < clientyg.resource + R
12: clienty,.credit < clienty,.credit + R

13: clientr,.resource < clientr.resource — R
14: head < head + 1

15: tail < tail — 1

16:  else

17: break

18:  end if

19: end while
20: return Updated C

Resources Usage Quantifying per-request resource usage
in LLM inference services presents a significant challenge,
as fine-grained attribution of GPU consumption is consid-
erably more complex than monitoring conventional metrics
such as CPU utilization. To address this complexity, we
adopt total token volume as a practical and robust proxy for
computational load. This approach is well-grounded in the
near-constant per-token processing cost inherent to Trans-
former architectures. Following the VTC (Sheng et al. 2024)
cost model, we assign greater weight to output tokens to
reflect their higher computational overhead—an asymme-
try that is also reflected in commercial API pricing schemes
such as OpenAlT’s:

Service; = Tokennput; + 2 X Tokenoytpur, (1)

To derive a normalized measure of resource usage, we di-
vide each client’s service value by the system-wide maxi-
mum:

) Service;
Serviceysage, = - )
max; Service;
This formulation provides a lightweight and scalable way
to approximate relative resource consumption across clients.

User Experience For online services, latency serves as
a core determinant of user experience, with SLOs typi-
cally expressed as latency thresholds. Rather than relying
on average-based metrics, we adopt a more sensitive mea-
sure of user dissatisfaction: the SLO violation rate. This rate

represents the proportion of requests that are deemed “SLO-
violating”—meaning their total response latency exceeds the
predefined threshold—as formally defined in Eq.3.

SLO, _ C’ountSLov (3)
Countarr

The fundamental rationale for this choice is that the lat-

ter metric exhibits greater sensitivity to tail latency events,

which are particularly detrimental to user experience. In

essence, a user’s ultimate satisfaction is often determined by

their worst interactions rather than overall average perfor-
mance.

SAFI; = a(SLO;) + (1 — a)(Serviceysage,)  (4)

SLO-Aware Fairness Index With explicit definitions for
user experience and resource usage established, we unify
them into a linear weighted metric termed the SLO-Aware
Fairness Index (SAFI), as defined in Eq. 4. This design is
driven by two key considerations. First, the linear formula-
tion ensures simplicity and interpretability, expressing the
final score as a transparent combination of two indepen-
dent factors—experience and consumption—without com-
plex nonlinear interactions. Second, given that the scheduler
operates online at high frequency, the lightweight compu-
tation involving only two multiplications and one addition
enables real-time decision-making with minimal computa-
tional overhead.

SAFI thus provides a holistic and quantitative assessment
of a user’s service state. A higher SAFI value indicates a
less favorable condition, attributed to either degraded user
experience or disproportionate resource consumption.

Definition of Experiential Fairness

With SAFI established as a tailored metric for user status,
we can now formally define Experiential Fairness.

By design, SAFI values approaching zero signify more
desirable user states (in terms of both experience and re-
source consumption), whereas values approaching one in-
dicate deteriorating conditions. We therefore assert that true
Experiential Fairness is achieved not by equalizing any sin-
gle metric, but by minimizing the disparity in SAFI values
across the entire user population.

Based on SAFI, we can now establish a formal guarantee
for Experiential Fairness. Rather than merely describing an
idealized state, we present the following theorem, which es-
tablishes a key theoretical property of our scheduling policy.

Theorem 1. A scheduling system governed by the ExFairS
ensures that for any small, predefined fairness threshold 3 >
0, the state of the system will converge such that for any two
active clients, i and j, in the set of clients C.

|SAFI; — SAFI;| < B, Vi,jecC (5)

Theorem 1 provides a theoretical guarantee that the vari-
ance of user states is bounded, ensuring that the service is
experientially fair. Its empirical validation will be presented
in the evaluation section.



Method

This section details ExFairS’s core scheduling mechanism,
which uses a dynamic credit system to achieve experiential
fairness. The mechanism translates client real-time status
into scheduling priority, enabling dynamic resource alloca-
tion as shown in Figure 1.

Credit-based Resource Exchange

To rectify fairness violations, ExFairS employs a dynamic
control mechanism designed to actively regulate and mini-
mize the disparity between client states. The mechanism op-
erates on the principle of disparity reduction, targeting the
two clients representing the extremes of the fairness distribu-
tion: the one with the highest SAFI (worst status) and the one
with the lowest (best status). A corrective resource exchange
is triggered only when the gap between these two extremes
exceeds the predefined fairness threshold, 5. This targeted
exchange boosts the priority of the underserved client while
moderating the over-served, creating a negative feedback
loop that continuously drives the system towards a globally
equitable state.

Given a matched pair (client g, clienty,), where client g
has a higher SAFI, we compute an exchange value R to
guide the adjustment. Initially, all clients have zero resource
quota, and the exchange value is determined by the SAFI gap
between the two clients. The value is computed as follows:

SAFIg — SAFI;
2

Subsequently, a bidirectional exchange is conducted
based on the computed value R. The disadvantaged client
(clientg) spends R credits to acquire additional resources,
while the advantaged client (client) transfers R units of
resources in exchange for credits. This mechanism estab-
lishes a micro-economy where clients trade resource surplus
for future credits or vice versa, enabling continuous self-
balancing of fairness in the system. The full procedure is
detailed in Algorithm 1.

R=| x 10] (6)

Request Serving by Priority

Following the specifics of the resource exchange, we employ
a priority-based queue management strategy to rearrange the
serving order of requests on the fly.

ExFairS translates a client’s resource advantage into ser-
vice priority via a dynamic reordering mechanism within the
waiting queue. The priority of each request is determined
by the client’s accumulated resources as calculated in Al-
gorithm 1. Clients with higher resource allocations receive
correspondingly higher scheduling priorities. A critical lim-
itation of naive priority queuing, however, is its propensity
for low-priority request starvation. Our approach is explic-
itly designed to circumvent this issue. Instead of advancing
high-priority requests to the absolute front of the queue, we
introduce a proportional priority insertion strategy that guar-
antees forward progress for all requests, with the full proce-
dure detailed in Algorithm 2.

The core of this strategy is a multi-stage calculation to de-
cide where a new request should stand in the queue. First, the

Algorithm 2: Proportional Priority Enqueueing Strategy

Input: A new request 7eqyq, the current queue Q, the pri-
ority distribution cache C
Parameter: Insert multiplier M/, Max forward positions
P, max
Output: Updated 9, C’
if C is empty then
Insert regyneq at the end of Q.
. else

1:

2

3

4 Pnew Teqybe,w.priority
5 Punique < sorted(C.keys())
6.

7

8

Nh <~ ‘{p € Punique ‘ p < pnew}‘

Ntotal — |Punique|

: if Prew ¢ Punique then
9: Ntotal — Ntotal +1
10:  endif
11:  r + Np/Niotar {Calculate relative priority rank}
12: No Zp,countGC.items() if p>prew count
13: Pf ~0
14:  if N, > 0 then
15: A+~10—-1r
16: P, + floor(N, x A)
17: Ps + min(Py x M, Ppyaz, No, |Q|)
18:  end if

19:  insert_pos <— max(0,|Q| — Py)

20:  Insert regueq, into Q at position insert_pos.
21: end if

22: Update cache C with pyeq.

23: return Updated Q and C.

algorithm assesses the request’s relative standing by com-
puting a normalized priority rank based on the current dis-
tribution of priorities in the queue. The number of positions
the request advances is then calculated as a fraction of the
total overtakable, lower-priority requests, where this frac-
tion is determined by its relative priority rank. This ensures
that higher-priority requests gain a significant—yet not ab-
solute—advantage. Finally, this advancement is constrained
by tunable parameters (a multiplier and a maximum posi-
tional limit) to provide fine-grained control over the policy’s
aggressiveness and ensure system stability.

A key property of this strategy is its formal guarantee
against starvation, which we state as the following theorem:

Theorem 2 (Starvation Avoidance Guarantee). For any re-
quest Teq in the queue Q at position k, Algorithm 1 guar-
antees that req will be dequeued after a finite number of
subsequent enqueue and dequeue operations, provided the
system continues to process requests.

In addition to this formal guarantee, Algorithm 2 offers
several other key advantages:

» Starvation Avoidance As established in Theorem 2, the
bounded nature of positional advancement ensures all re-
quests are eventually served.

* Dynamic and Context-Aware Prioritization A re-
quest’s scheduling advantage, A;, is determined not by
its absolute priority value P;, but by its relative rank
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Figure 2: Performance Comparison of Scheduling Algorithms Across Different Workloads (o = 0.7 in Eq. 4). Line plots
smoothed with 3-point moving average. S(Short Input) L(Long Input) Mix(S & L Input) QPM(Querys Per Minute) 1(Higher
is Better) | (Lower is Better) #(Inconsistent SLO) 4(Consistent SLO)

Rank(P;) within the current queue state (), ensuring
adaptivity to workload fluctuations.

* Proportional Fairness Provides nuanced fairness where
the positional advancement A Pos; is proportional to the
product of a request’s relative priority rank R; and the
number of overtakable lower-priority requests N« p, .

e Configurable Granularity of Control Offers fine-
grained control via tunable hyperparameters. The final
positional jump is the minimum of the calculated pro-
portional advancement (scaled by a multiplier M) and a
hard cap Pp,ax, allowing administrators to balance policy
aggressiveness versus fairness.

Evaluation

In this section, we evaluate ExFairS against baseline meth-
ods across multiple scenarios to validate its effectiveness in
optimizing user experience and system efficiency.

Experimental Setup

Implementation We implement our ExFairS in Python
and tested in real testbed on top of vLLM 0.8.1 (Kwon et al.
2023), an industrial-grade LLM inference engine. Note that

our ExFairS is pluggable, allowing seamless compatibility
across all LLM inference frameworks.

Tunable Parameters To validate ExFairS robustness, we
evaluate its performance across six experimental scenar-
ios designed to simulate diverse conditions, from balanced
workloads to complex high-concurrency heterogeneous en-
vironments. Configuration details are presented in Table ??.
For the fairness threshold S in Theorem 1, we set 3 = 0.1,
empirically determined to balance scheduling stability and
responsiveness to fairness imbalances.

Models and Hardware We conduct our experiments us-
ing Llama-3.1-8B (Patterson et al. 2022) and Qwen2.5-32B
(Yang et al. 2024a) as the inference models. The hardware
platform consists of a single machine equipped with eight
NVIDIA V100 GPUs, each with 32 GB of memory.

Workloads We construct our request dataset using
ShareGPT-40 (OpenGVLab 2024) for short requests and
LongBench (Bai et al. 2024; Trivedi et al. 2022; Kocisky
et al. 2017) for long requests, creating a mixed workload
with varying lengths.

Baselines We compare ExFairS with three baseline
scheduling algorithms:



Scenario Configuration Description # Clients  Task Sizes (QPM) SLO (sec.)

I S+L Clients (QPM=50) Balanced Load 4 (2S+2L) 50, 50, 50, 50 20, 30

1I S+L Clients (QPM=10-90) Imbalanced Load 4 (2S+2L) 10, 90 (Polarized) 20

111 Mix 4 Clients (QPM=20-40) Heterogeneous 4 Mix 20, 40 15,20

v Mix 8 Clients (QPM=10-30) Heterogeneous 8 Mix 10, 20, 30 10, 15, 20, 25

\' Mix 20 Clients (QPM=5-15) High Concurrency 20 Mix 5,8,12, 15 5,8, 10, 12, 15, 20
VI Mix 50 Clients (QPM=4) High Concurrency 50 Mix 4 (Uniform) 8,10, 12, 15,20

Table 1: Overview of the Six Experimental Scenarios and Their Configurations

0.0 0.2 0.4

0.6 0.8 1.0

Performance Score (Darker = Better)

S+L Clients
(QPM=50) & &

S+L Clients
(QPM=10-90) & ¢

Mix 4 Clients
(QPM=20-40) & &

VIC- 0.60 0.36 0.30 0.48 0.58 0.38 0.35 0.00

FCFS- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

RR- 0.63 0.45 0.55 0.21 0.22 0.30 0.52 0.32 0.55

ExFair$ - 0.64 0.33 0.05

SLO Viol. Latency Tokens/sSLO-Aware Jain 5LO Viol. Latency Tokens/sSLO-Aware ~Jain

0.44 0.29 0.15 0.20 0.00

0.00 0.00 0.00 0.00 0.54

SLO Viol. Latency Tokens/sSLO-Aware Jain SLO Viol. Latency Tokens/sSLO-Aware Jain

Mix 8 Clients
(QPM=10-30) & &

Mix 20 Clients
(QPM=5-15) & &

Mix 50 Clients
(QPM=4) & &

0.54 0.34 0.47 0.45 0.21 0.00 0.19 0.25 0.56 0.07 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.27 0.00 0.46 0.36
0.25 0.00 0.00 0.54 0.53 0.39 0.49 0.55 0.00 0.28 0.00 0.00 0.02

5LO Viol. Latency Tokens/sSLO-Aware ~Jain 5LO Viol. Latency Tokens/sSLO-Aware Jain

Figure 3: Normalized Performance Score Matrix: Quantitative Assessment of Scheduling Algorithm Effectiveness Across Var-
ied Client Configurations and Request Patterns. S(Short Input) L(Long Input) Mix(S & L Input) QPM(Querys Per Minute)
#(Inconsistent SLO) 4(Consistent SLO) SLO Viol.(Slo Violation Rate) Jain(Jain Index)

e FCFS A scheduling policy that processes requests
strictly in the order of their arrival.

* Round Robin (RR) A strategy that distributes requests
sequentially across available servers.

* VTC (Sheng et al. 2024) A scheduling algorithm that
maintains a service counter for each client and prioritizes
requests from the client with the lowest counter value.

* Adapted QoE-MinComp Adapted from max-min fair-
ness principles in (Feng et al. 2023).

These baselines span different scheduling paradigms:
FCFS as the naive default, Round Robin for simple fair-
ness, VIC for state-of-the-art resource-aware scheduling,
Adapted QoE-MinComp for theoretical comparison (used
primarily for convergence comparison due to utility metric
adaptations and implementation complexity), and QoE for
QoE-driven resource adjustment. Most existing scheduling
approaches emphasize system performance, making them
less suitable for our user-centric evaluation.

Metrics To validate the effectiveness of our results, we
employ the following key metrics for comparison.

* SLO Violation Rate: The proportion of requests that vi-
olate SLO constraints within a given time window, nor-
malized by the number of completed requests. This met-
ric reflects client-side user experience.

* Latency: The p99th percentile of request response time.
It is used in conjunction with the SLO Violation Rate as
a core standard for measuring user experience.

* Tokens Per Second: Measures system-level throughput
and overall performance.

* SAFI: As defined earlier, this metric captures the service
status of individual clients.

e Jain’s Index (Jain et al. 1984): Calculated based on
SAFT across clients to quantify system-wide fairness.

Performance under Workload Imbalance

Scenarios I and II evaluate robustness against varying work-
load structures. In Scenario I (balanced load), ExFairS
demonstrates superior performance, achieving zero SLO vi-
olations as shown in Figure 2.

ExFairS’s robustness is most prominently highlighted in
Scenario II (imbalanced load), which is specifically de-
signed to create high contention. FCFS suffers from severe
head-of-line blocking, resulting in high and erratic SLO vio-
lation rates. In contrast, ExFairS’s SAFI metric immediately
identifies the deteriorating experience of starved clients,
while its credit-exchange mechanism dynamically elevates
their priority. This proactive intervention enables ExFairS to
maintain a perfect normalized score of 1.00 for both SLO
Violation and Latency metrics in the heatmap and exhibit
the lowest performance curves in the time-series analysis.

Performance under Heterogeneous Service Levels

Scenarios III and IV introduce client heterogeneity to sim-
ulate multi-tenant environments with diverse SLOs. Re-
sults in Figure 3 and Figure 2 clearly demonstrate that Ex-
FairS’s superiority becomes increasingly pronounced as het-
erogeneity and contention intensify from Scenario III to the
more complex Scenario I'V.

Figure 3 reveals RR’s catastrophic latency performance
failure (score of 0.00) in Scenario IV. Figure 2 explains this
failure: RR’s latency spikes dramatically as its simplistic
equal-turn policy cannot differentiate between clients with
varying SLO requirements. In stark contrast, ExFairS main-
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tains the lowest and most stable latency. This directly vali-
dates its core design philosophy, where SAFI’s explicit in-
corporation of SLO constraints enables intelligent prioriti-
zation of clients with stricter service requirements.

Scalability and Stability under High Concurrency

The final experiments, Scenarios V and VI, assess system
scalability and stability under extreme concurrent loads. Un-
der Scenario V’s 20-client diverse workload, the time-series
data in Figure 2 showcases ExFairS’s rapid convergence,
providing empirical validation of our theoretical guarantees.
The corresponding SAFI bar chart demonstrates ExFairS
achieving a significantly superior (lower) score.

Even under Scenario VI's extreme 50-client “thundering
herd” configuration, where all systems experience immense
stress, ExFairS maintains its performance advantage. The
heatmap reveals that while FCFS achieves a high Jain’s In-
dex score, its core performance metrics approach zero, in-
dicating catastrophic system failure. ExFairS, conversely,
sustains the highest possible scores for both SLO Violation
and Latency metrics. This demonstrates that its proportional
and bounded priority mechanisms effectively prevent system
oscillations, ensuring stability even under the most severe
workload conditions.

Convergence Analysis

To demonstrate dynamic convergence, we analyze the 20-
client high-contention Scenario V, including QoE, a strong
baseline adapted from max-min QoE principles. As shown

in Figure 5, ExFairS exhibits rapid convergence to the low-
est SAFI value of approximately 0.17, outperforming all
baselines. FCFS shows minimal convergence, while RR
and VTC converge slowly to inferior states. Notably, QoE
also shows downward trends but stabilizes at a significantly
higher SAFI value than ExFairS, highlighting our superior
fairness formulation. ExFairS achieves this optimal experi-
ential fairness while maintaining one of the highest Jain’s
Fairness Index scores, confirming its holistic fairness capa-
bility.

Analysis of the Weighting Factor o

Evaluating the robustness of ExFairS with respect to its
weighting factor o, we conducted a comprehensive sensi-
tivity analysis specifically within the Scenario III. Figure 4
presents the results, which demonstrate that ExFairS consis-
tently outperforms all baseline methods across different «
configurations in this challenging scenario.

The analysis reveals a clear trade-off: lower « values re-
duce emphasis on user experience, resulting in moderated
yet superior SLO compliance compared to baselines. This
finding validates our selection of a=0.7 as the default set-
ting, which effectively aligns with our user-centric objective
of optimizing experiential fairness.

Conclusion

In conclusion, this paper challenges the conventional,
system-centric definition of fairness in the context of LLM
inference serving. We introduce and formularize a new no-
tion, Experiential Fairness, which fundamentally shifts the
scheduling objective from equality of resource allocation to
equity of user-perceived experience. We developed ExFairS,
a novel scheduling framework that uses a unified metric to
co-optimize for user SLO compliance and system efficiency.
Extensive experiments on real testbed demonstrate that our
approach is highly effective, reducing SLO violations by up
to 100% while simultaneously increasing system through-
put by 14-21.9%. These results not only validate ExFairS as
a high-performance scheduler but, more importantly, estab-
lish the practical viability of prioritizing experiential equity,
proving that user-centric fairness and system efficiency can
be achieved in concert.
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